分析 先求出第三次取出的是白球的種數(shù),再求出在第k個(gè)袋子中第三次取出的是白球的概率,選到第k個(gè)袋子的概率為$\frac{1}{n}$,由此能求出第三次取出的是白球的概率.
解答 解:設(shè)選出的是第k個(gè)袋,連續(xù)三次取球的方法數(shù)為n(n-1)(n-2),
第三次取出的是白球的三次取球顏色有如下四種情形:
(白白白),取法數(shù)為(n-k)(n-k-1)(n-k-2),
(白紅白),取法數(shù)為k(n-k)(n-k-1),
(紅白白),取法數(shù)為k(n-k)(n-k-1),
(紅紅白),取法數(shù)為k(k-1)(n-k),
從而第三次取出的是白球的種數(shù)為:
(n-k)(n-k-1)(n-k-2)+k(n-k)(n-k-1)+k(n-k)(n-k-1)+k(k-1)(n-k)=(n-1)(n-2)(n-k),
則在第k個(gè)袋子中第三次取出的是白球的概率pk=$\frac{n-k}{n}$,
而選到第k個(gè)袋子的概率為$\frac{1}{n}$,故所求概率為:
p=$\sum_{k=1}^{n}{p}_{k}•\frac{1}{n}$=$\sum_{k=1}^{n}\frac{n-k}{n}•\frac{1}{n}$
=$\frac{1}{{n}^{2}}\sum_{k=1}^{n}(n-k)$=$\frac{1}{{n}^{2}}\sum_{i=0}^{n-1}i$=$\frac{n-1}{2n}$.
點(diǎn)評(píng) 本題考查概率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2cosx | B. | sinx2 | C. | xsinx | D. | x2-$\frac{1}{6}$x4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2n+2}{{n}^{2}}$ | B. | $\frac{n+5}{3n}$ | C. | $\frac{2n+2}{3n}$ | D. | $\frac{2n+2}{2n+3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com