3.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若$\frac{{a}_{1008}}{{a}_{1006}}$=$\frac{2011}{2015}$,則$\frac{{S}_{2015}}{{S}_{2011}}$=1.

分析 利用等差數(shù)列的通項(xiàng)公式及其性質(zhì)、前n項(xiàng)和公式即可得出.

解答 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,$\frac{{a}_{1008}}{{a}_{1006}}$=$\frac{2011}{2015}$,
則$\frac{{S}_{2015}}{{S}_{2011}}$=$\frac{\frac{2015({a}_{1}+{a}_{2015})}{2}}{\frac{2011({a}_{1}+{a}_{2011})}{2}}$=$\frac{2015{a}_{1008}}{2011{a}_{1006}}$=$\frac{2015}{2011}×\frac{2011}{2015}$=1,
故答案為:1.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式及其性質(zhì)、前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=xlnx.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)對于任意正實(shí)數(shù)x,不等式f(x)>kx-$\frac{1}{2}$恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,過F1作圓:x2+y2=$\frac{3}{4}$c2的切線交雙曲線左右支分別于A,B兩點(diǎn),且|$\overrightarrow{BA}$|=|$\overrightarrow{B{F}_{2}}$|,則雙曲線的離心率等于$\frac{\sqrt{13}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)G是三角形ABC的重心,已知A(x1,y1),B(x2,y2),C(x3,y3),則G點(diǎn)的坐標(biāo)為($\frac{{x}_{1}{+x}_{2}{+x}_{3}}{3}$,$\frac{{y}_{1}{+y}_{2}{+y}_{3}}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知$\overrightarrow{a}$=(1,1,0),$\overrightarrow$=(0,1,1),$\overrightarrow{c}$=(1,0,1),$\overrightarrow{p}$=$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{q}$=$\overrightarrow{a}$+2$\overrightarrow$-$\overrightarrow{c}$,求$\overrightarrow{p}$,$\overrightarrow{q}$,$\overrightarrow{p}$•$\overrightarrow{q}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若$\overrightarrow{a}$=(1,5,-1),$\overrightarrow$=(-2,3,5),分別求滿足下列條件的實(shí)數(shù)k的值.
(1)若(k$\overrightarrow{a}$+$\overrightarrow$)∥($\overrightarrow{a}$-3$\overrightarrow$);
(2)若(k$\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow{a}$-3$\overrightarrow$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)是n給定的大于2的整數(shù),有n個(gè)外表上沒有區(qū)別的袋子,第k個(gè)袋子有k個(gè)紅球,n-k個(gè)白球,把這些袋子混合后,任選一個(gè)袋子,并且從中連續(xù)取出三個(gè)球(每次取出不放回),求第三次取出的是白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x2+bx+c(b,c∈R).
(1)當(dāng)b=c>0時(shí),若函數(shù)f(x)的圖象于x軸有兩個(gè)不同的交點(diǎn),其橫坐標(biāo)分別為x1,x2,求證:x1<-1且x2<-1;
(2)若對任意滿足|x|≥2的實(shí)數(shù)x有f(x)≥0成立,且f($\frac{2{x}^{2}+3}{{x}^{2}+1}$)的最大值為1,試求b,c滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知直線l:y=x+1平分圓C:(x-1)2+(y-b)2=4,則直線x=3同圓C的位置關(guān)系是(  )
A.相交B.相切C.相離D.不能確定

查看答案和解析>>

同步練習(xí)冊答案