分析 (1)在Rt△DEF中,由已知可得∠DEF=45°,在Rt△ABE中,得到∠AEB=45°,則可得到EF⊥BE,結(jié)合平面PBE⊥平面BCDE,可得EF⊥平面PBE,從而得到平面PBE⊥平面PEF;
(2)過(guò)P做PO⊥BE,由面面垂直的性質(zhì)及線(xiàn)面垂直的判定得到PO⊥平面BCDE,即PO為四棱錐P-BCFE的高.把S四邊形BCFE轉(zhuǎn)化為S矩形ABCD-S△ABE-S△DEF,求值后代入棱錐的體積公式得答案.
解答 (1)證明:如圖,
在Rt△DEF中,∵ED=DF,∴∠DEF=45°.
在Rt△ABE中,∵AE=AB,∴∠AEB=45°,
∴∠BEF=90°,則EF⊥BE.
∵平面PBE⊥平面BCDE,且平面PBE∩平面BCDE=BE,
∴EF⊥平面PBE,
∵EF?平面PEF,∴平面PBE⊥平面PEF;
(2)解:過(guò)P做PO⊥BE,
∵PO?平面PBE,平面PBE⊥平面BCDE且平面PBE∩平面BCDE=BE,
∴PO⊥平面BCDE,
四棱錐P-BCFE的高h(yuǎn)=PO=$2\sqrt{2}$.
S四邊形BCFE=S矩形ABCD-S△ABE$-{S}_{△DEF}=6×4-\frac{1}{2}×4×4-\frac{1}{2}×2×2=14$,
則${V}_{P-BCFE}=\frac{1}{3}{S}_{四邊形BCFE}•h$=$\frac{1}{3}×14×2\sqrt{2}=\frac{28\sqrt{2}}{3}$.
點(diǎn)評(píng) 本題主要考查空間線(xiàn)面關(guān)系、幾何體的體積等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
X | 0 | 1 |
P | 0.5 | 0.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n2 | B. | n2+n | C. | 2n-1 | D. | 2n+1-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com