分析 由三角函數(shù)的定義和已知題意結合圖象可得$\frac{3}{sinα}=\frac{9}{cos(30°-α)}$,結合sin2α+cos2α=1可解得sinα的值,進而可得等邊△ABC的邊長AB=$\frac{3}{sinα}$,代值計算可得.
解答 解:如圖所示,在RT△ABD中$\frac{BD}{AB}$=sinα,∴AB=$\frac{BD}{sinα}$=$\frac{3}{sinα}$,
同理在RT△ACE中$\frac{AE}{AC}$=cos∠CAE=cos[90°-(α+60°-)]=cos(30°-α),
∴AC=$\frac{AE}{cos(30°-α)}$=$\frac{9}{cos(30°-α)}$,
∴$\frac{3}{sinα}=\frac{9}{cos(30°-α)}$,即cos(30°-α)=3sinα,
∴$\frac{\sqrt{3}}{2}$cosα+$\frac{1}{2}$sinα=3sinα,∴$\frac{\sqrt{3}}{2}$cosα=$\frac{5}{2}$sinα,
結合sin2α+cos2α=1可解得sinα=$\frac{\sqrt{21}}{14}$,
∴等邊△ABC的邊長AB=$\frac{3}{sinα}$=2$\sqrt{21}$
故答案為:2$\sqrt{21}$
$2\sqrt{21}$
點評 本題考查三角形中的幾何運算,涉及三角函數(shù)的定義和和差角的三角函數(shù),屬中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 3$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{2}$m | B. | 2$\sqrt{3}$m | C. | 4 m | D. | 6 m |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com