分析 直接利用數(shù)學(xué)歸納法證明問題的步驟,證明不等式即可.
解答 證明:(1)當(dāng)n=1時(shí),左邊=1,右邊=1,命題成立.
(2)假設(shè)當(dāng)n=k時(shí),1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k}-1}$≤k成立
當(dāng)n=k+1時(shí),左邊=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$≤k+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$
≤k+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k}}$=k+1,
當(dāng)n=k+1時(shí)命題成立.
由(1)(2)可得,對(duì)于任意n≥1,n∈N*都成立.
點(diǎn)評(píng) 本題考查數(shù)學(xué)歸納法證明含自然數(shù)n的表達(dá)式的證明方法,注意n=k+1的證明時(shí),必須用上假設(shè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{ln2}$+$\frac{3(lo{g}_{2}3)}{ln2}$-1 | B. | 3log2$\frac{3}{ln2}$-$\frac{3}{ln2}$-1 | ||
C. | log23-3log2$\frac{3}{ln2}$+1 | D. | $\frac{3}{ln2}$-$\frac{3(lo{g}_{2}3)}{ln2}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [11,+∞) | B. | [13,+∞) | C. | [15,+∞) | D. | [17,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com