20.在實(shí)數(shù)集上規(guī)定運(yùn)算“*”滿足:1*1=2,1*(n+1)-1*n=3,則1*2004等于( 。
A.2004B.2006C.4008D.6011

分析 直接根據(jù)遞推關(guān)系1*1=2,1*(n+1)-1*n=3,即可求得答案.

解答 解:∵1*1=2,1*(n+1)-1*n=3,
∴1*2004=1*2003+3=1*2002+6=…=1*1+3×2003=2+6009=6011.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,解題時(shí)要注意新定義的運(yùn)算,注意合理地運(yùn)用規(guī)律進(jìn)行求解,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知A,B是函數(shù)f(x)=$\frac{1}{2}$+log2$\frac{x}{1-x}$的圖象上任意兩點(diǎn),且$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$),點(diǎn)M($\frac{1}{2}$,m).
(I)求m的值;
(II)若Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$),n∈N*,且n≥2,求Sn
(III)已知an=$\left\{\begin{array}{l}{\frac{1}{2},n=1}\\{{S}_{n},n≥2}\end{array}\right.$,其中n∈N*.Tn為數(shù)列{an}的前項(xiàng)和,若Tn>λ(Sn+1+1)對(duì)一切n∈N*都成立,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,AB=1,PA⊥平面PCD,PA=2$\sqrt{3}$,PD=2,E為線段DP上的一點(diǎn).
(Ⅰ)求證:平面PAD⊥平面ABCD;
(Ⅱ)若二面角P-BC-E與二面角E-BC-D的大小相等,求DE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=(x+1)lnx,g(x)=a(x-1)(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥g(x)對(duì)任意的x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.6名同學(xué)坐成一排,要求某3人必須相鄰,一共有多少種坐法?若某2人不能相鄰,一共有多少種不同的站法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在平面直角坐標(biāo)系xOy中,若直線l:x-2y+m-1=0在y軸上的截距為$\frac{1}{2}$,則實(shí)數(shù)m的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖的程序框圖,則判斷框可填入和輸出的結(jié)果分別是( 。
A.c>x;a,b,c中最小的B.c=x;a,b,c中最小的
C.c<x;a,b,c中最大的D.c>x;a,b,c中最大的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=(m2-m-1)x-5m-3是冪函數(shù)且是(0,+∞)上的增函數(shù),則函數(shù)g(x)=$\frac{x+1}{{\sqrt{{{log}_{0.2}}(x+m)}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1,2)B.(1,2]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若某公司從5位大學(xué)畢業(yè)生甲、乙、丙、丁、戊中錄用3人,這5人被錄用的機(jī)會(huì)均等,則甲、乙同時(shí)被錄用的概率為( 。
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案