11.已知函數(shù)f(x)=ax3+bx2(x∈R)的圖象過點(diǎn)P(-1,2),且在點(diǎn)P處的切線恰好與直線x-3y=0垂直.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)在區(qū)間[m,m+1]上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.

分析 (1)將P的坐標(biāo)代入f(x)的解析式,得到關(guān)于a,b的一個(gè)等式;求出導(dǎo)函數(shù),求出f′(1)即切線的斜率,利用垂直的兩直線的斜率之積為-1,列出關(guān)于a,b的另一個(gè)等式,解方程組,求出a,b的值,即可求函數(shù)f(x)的解析式;
(2)求出 f′(x),令f′(x)>0,求出函數(shù)的單調(diào)遞增區(qū)間,據(jù)題意知[m,m+1]⊆(-∞,-2]∪[0,+∞),列出端點(diǎn)的大小,求出m的范圍.

解答 解:(1)∵y=f(x)過點(diǎn)P(-1,2),且在點(diǎn)P處的切線恰好與直線x-3y=0垂直,
∴$\left\{\begin{array}{l}{-a+b=2}\\{3a-2b=-3}\end{array}\right.$,
∴a=1,b=3,
∴f(x)=x3+3x2
(2)由題意得:f′(x)=3x2+6x=3x(x+2)>0,
解得x>0或x<-2.
故f(x)的單調(diào)遞增為(-∞,-2]和[0,+∞).
 即m+1≤-2或m≥0,
故m≤-3或m≥0.

點(diǎn)評 注意函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值是曲線的切線斜率;直線垂直的充要條件是斜率之積為-1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知集合A={-2,-1,0,1},集合B={x|-1,1,2,3},則A∩B={-1,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知log2(x+y)=log2x+log2y,則$\frac{1}{x}+\frac{1}{y}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2(a+1)lnx-ax,g(x)=$\frac{1}{2}{x^2}$-x
(1)若函數(shù)f(x)在定義域內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)證明:若-1<a<7,則對于任意x1,x2∈(1,+∞),x1≠x2,有$\frac{{f({x_1})-f({x_2})}}{{g({x_1})-g({x_2})}}$>-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求下列函數(shù)的導(dǎo)數(shù):
(1)y=$\frac{sinx}{x}$;      
(2)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,2asinA=(2sinB-$\sqrt{3}$sinC)b+(2sinC-$\sqrt{3}$sinB)c.
(1)求∠A;
(2)若a=2,b=2$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若某公司從四位大學(xué)畢業(yè)生甲、乙、丙、丁中錄用兩人,這四人被錄用的機(jī)會均等,則甲被錄用的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.下列圖象中,有一個(gè)是函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+({a^2}-1)x+1(a∈$R,a≠0)的導(dǎo)函數(shù)f′(x)的圖象,則f(-1)=-$\frac{1}{3}$
A、  B、   C、   D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知點(diǎn)P(x,y)的坐標(biāo)滿足條件$\left\{\begin{array}{l}x+y≤4\\ y≥x\\ x≥1\end{array}\right.$點(diǎn)O為坐標(biāo)原點(diǎn),那么|OP|的最大值等于$\sqrt{10}$.

查看答案和解析>>

同步練習(xí)冊答案