6.設(shè)直線l1:2x-my-1=0,l2:(m-1)x-y+1=0.若l1∥l2,則m的值為( 。
A.2B.-1C.2或-1D.1或-2

分析 由直線的平行關(guān)系可得2×(-1)-(-m)(m-1)=0,解方程排除重合可得.

解答 解:∵直線l1:2x-my-1=0,l2:(m-1)x-y+1=0,且l1∥l2,
∴2×(-1)-(-m)(m-1)=0,解得m=-1或m=2,
經(jīng)驗(yàn)證當(dāng)m=-1時(shí)兩直線重合,應(yīng)舍去
故選:A.

點(diǎn)評(píng) 本題考查直線的一般式方程和平行關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.從邊長(zhǎng)為10cm×16cm的矩形紙板的四角截去四個(gè)相同的小正方形,做成一個(gè)無(wú)蓋的盒子,則盒子容積的最大值為( 。
A.160 cm3B.144cm3C.72cm3D.12 cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知△ABC中,角A、B、C的對(duì)邊分別是a、b、c,a=2,函數(shù)f(x)=$\frac{1}{4}{x^3}-\frac{3}{4}$x的極大值是cosA.
(1)求A;  
(2)若S△ABC=$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)解關(guān)于x不等式(x-a)(x-1)<0.
(2)證明:(x+y)($\frac{1}{x}$+$\frac{1}{y}$)≥4(其中x>0,y>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=ln(-x2+2x+3)的單調(diào)減區(qū)間為(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.拋物線x2=-4y的焦點(diǎn)坐標(biāo)為( 。
A.(1,0)B.(0,1)C.(-1,0)D.(0,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知一長(zhǎng)方體從一個(gè)頂點(diǎn)出發(fā)的三條棱長(zhǎng)分別為3,$\sqrt{11}$,4,若該長(zhǎng)方體的頂點(diǎn)都在一 個(gè)球的球面上,則這個(gè)球的體積為( 。
A.288πB.144πC.108πD.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足$\sqrt{3}ccos{A}=asinC$.
(1)若4sinC=c2sinB,求△ABC的面積;
(2)若$\overrightarrow{{A}{B}}•\overrightarrow{{A}C}=4$,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=2x2+(a-1)x+1-2a在$(-∞,\frac{1}{2}]$上為減函數(shù),則f(1)的取值范圍是( 。
A.(-∞,3]B.(-∞,-1]C.[1,+∞)D.[3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案