分析 (Ⅰ)根據(jù)Ω函數(shù)的定義直接判斷函數(shù)f(x)=x2-$\frac{1}{3}$x,g(x)=sinπx是否是Ω函數(shù);
(Ⅱ)根據(jù)周期函數(shù)的定義,結(jié)合Ω函數(shù)的條件,進(jìn)行判斷和證明即可.
(Ⅲ)根據(jù)Ω函數(shù)的定義,分別討論a=0,a<0和a>0時(shí),滿足的條件即可.
解答 解:(Ⅰ)f(x)=x2-$\frac{1}{3}$x是Ω函數(shù),g(x)=sinπx不是Ω函數(shù);------------------(4分)
(Ⅱ)T的最小值為1.--------------------------(11分)
因?yàn)閒(x)是以T為最小正周期的周期函數(shù),所以f(T)=f(0).
假設(shè)T<1,則[T]=0,所以f([T])=f(0),矛盾.--------------------------(6)
所以必有T≥1,
而函數(shù)l(x)=x-[x]的周期為1,且顯然不是Ω函數(shù),
綜上,T的最小值為1.--------------------------(9分)
(Ⅲ) 當(dāng)函數(shù)f(x)=x+$\frac{a}{x}$是Ω函數(shù)時(shí),
若a=0,則f(x)=x顯然不是Ω函數(shù),矛盾.------(10分)
若a<0,則f′(x)=1-$\frac{a}{{x}^{2}}$>0,
所以f(x)在(-∞,0),(0,+∞)上單調(diào)遞增,
此時(shí)不存在m<0,使得 f(m)=f([m]),
同理不存在m>0,使得 f(m)=f([m]),
又注意到m[m]≥0,即不會(huì)出現(xiàn)[m]<0<m的情形,
所以此時(shí)f(x)=x+$\frac{a}{x}$不是Ω函數(shù).---------(11分)
當(dāng)a>0時(shí),設(shè)f(m)=f([m]),所以m+$\frac{a}{m}$=[m]+[$\frac{a}{m}$],所以有a=m[m],其中[m]≠0,
當(dāng)m>0時(shí),
因?yàn)閇m]<m<[m]+1,所以[m]2<m[m]<([m]+1)[m],
所以[m]2<a<([m]+1)[m],--------(12分)
當(dāng)m<0時(shí),[m]<0,
因?yàn)閇m]<m<[m]+1,所以[m]2>m[m]>([m]+1)[m],
所以[m]2>a>([m]+1)[m],--------(13分)
記k=[m],綜上,我們可以得到
“a>0且?x∈N•,a≠k2且a≠k(k+1).------(14分)
點(diǎn)評(píng) 本題主要考查與周期函數(shù)有關(guān)的新定義試題,考查學(xué)生的運(yùn)算和推理能力,綜合性較強(qiáng),有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{tanα}$ | B. | -$\frac{2}{tanα}$ | C. | $\frac{2}{sinα}$ | D. | -$\frac{2}{sinα}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com