分析 (Ⅰ)由α的范圍和平方關(guān)系求出sinα,再由兩角和的正弦函數(shù)求出sin(α+$\frac{π}{6}$)的值;
(Ⅱ)由α,β為銳角得α+β∈(0,π),由平方關(guān)系求出sin(α+β),再由兩角差的余弦函數(shù)求出cosβ=cos[(α+β)-α]的值.
解答 解:(Ⅰ)∵α為銳角,sinα=$\frac{1}{7}$,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{4\sqrt{3}}{7}$,
∴sin(α+$\frac{π}{6}$)=sinαcos$\frac{π}{6}$+cosαsin$\frac{π}{6}$)
=$\frac{1}{7}×\frac{\sqrt{3}}{2}+\frac{4\sqrt{3}}{7}×\frac{1}{2}$=$\frac{5\sqrt{3}}{14}$;
(Ⅱ)∵α,β為銳角,∴α+β∈(0,π),
由cos(α+β)=$\frac{3}{5}$得,sin(α+β)=$\sqrt{1-{cos}^{2}(α+β)}$=$\frac{4}{5}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα
=$\frac{3}{5}×\frac{4\sqrt{3}}{7}+\frac{4}{5}×\frac{1}{7}$=$\frac{4+12\sqrt{3}}{35}$.
點(diǎn)評(píng) 本題考查由兩角和與差的正弦、余弦函數(shù),以及平方關(guān)系的應(yīng)用,注意角的范圍和角之間的關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{π}{2}$ | C. | $\frac{4}{π}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 120 | B. | 210 | C. | 400 | D. | 440 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
資金投入 x | 2 | 3 | 4 | 5 | 6 |
利潤(rùn)y | 2 | 3 | 5 | 7 | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1<x<3} | B. | {x|0<x<3} | C. | {x|x>-1} | D. | {x|x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 1 | C. | 0 | D. | $\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com