分析 先判斷定義域是否關(guān)于原點(diǎn)對(duì)稱,再判斷f(-x)與f(x)的關(guān)系,得出結(jié)論.
解答 解:(1)f(x)的定義域?yàn)閧x|x≠$\frac{π}{2}$+kπ,k∈Z},顯然關(guān)于原點(diǎn)對(duì)稱.
∵f(-x)=lg(1+sinx)-1g(1-sinx)=-f(x).
∴f(x)是奇函數(shù).
(2)由函數(shù)有意義得sinx≠1,x≠$\frac{π}{2}$+2kπ,顯然定義域不關(guān)于原點(diǎn)對(duì)稱,
∴f(x)=$\frac{1-co{s}^{2}x}{1-sinx}$為非奇非偶函數(shù).
點(diǎn)評(píng) 本題考查了函數(shù)奇偶性的判斷,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 45° | B. | 135° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com