9.已知復(fù)數(shù)$z=\frac{1+3i}{3-i}$,$\overline z$是z的共軛復(fù)數(shù),則$\overline z$•z=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.1D.-1

分析 把復(fù)數(shù)z的分子提取i,約分后化簡(jiǎn)z,代入$\overline z$•z得答案.

解答 解:∵$z=\frac{1+3i}{3-i}=\frac{(3-i)i}{3-i}=i$,
∴$z•\overline z=i•(-i)=1$.
故選:C.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.判斷下列函數(shù)的奇偶性.
(1)f(x)=lg(1-sinx)-1g(1+sinx);
(2)f(x)=$\frac{1-co{s}^{2}x}{1-sinx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖所示,在平面直角坐標(biāo)系xOy中,角α的終邊與單位圓交于點(diǎn)A.若點(diǎn)A的縱坐標(biāo)是$\frac{4}{5}$,那么sinα的值是( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.從點(diǎn)P(-2,1)向圓x2+y2-2x-2my+m2=0作切線,當(dāng)切線長(zhǎng)最短時(shí),m的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.關(guān)于函數(shù)$f(x)=\left\{{\begin{array}{l}{1,x為有理數(shù)}\\{0,x為無(wú)理數(shù)}\end{array}}\right.$有以下四個(gè)命題:
①對(duì)于任意的x∈R,都有f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③若T為一個(gè)非零有理數(shù),則f(x+T)=f(x)對(duì)任意x∈R恒成立;
④在f(x)圖象上存在三個(gè)點(diǎn)A,B,C,使得△ABC為等邊三角形.
其中正確命題的序號(hào)是①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在△ABC中,內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,若$bsinA-\sqrt{3}acosB=0$,且b2=ac,則$\frac{a+c}$的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.與sin2016°最接近的數(shù)是( 。
A.$\frac{11}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=2cosx(sinx+cosx),x∈R.
(1)求$f(\frac{5π}{4})$的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)f(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.圓x2+y2-2x-2y=0上的點(diǎn)到直線x+y-8=0的距離的最小值是2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案