18.設(shè)數(shù)列{an}為等差數(shù)列,若a1=1,求公差d取何值時,使得a1•a3+a2•a3最小.

分析 由題意把a1•a3+a2•a3化為關(guān)于d的二次函數(shù),然后利用配方法求得最值.

解答 解:∵a1=1,
∴a1•a3+a2•a3 =(a1+a2)a3=(2+d)(1+2d)=2d2+5d+2=$2(d+\frac{5}{4})^{2}-\frac{9}{8}$,
∴當(dāng)d=$-\frac{5}{4}$時,a1•a3+a2•a3最小為-$\frac{9}{8}$.

點評 本題考查等差數(shù)列的通項公式,考查了等差數(shù)列的性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知公比小于1的等比數(shù)列{an}的前n項和為Sn,a1=$\frac{2}{3}$且13a2=3S3(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=nan,求數(shù)列{bn}的前項n和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(改編)已知f(x)=kx2-4x+k-3.
(1)若f(x)≤0恒成立,求實數(shù)k的取值范圍;
(2)若不等式f(x)≤0的解集為空集,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知2sinα=1+cosα,則tan$\frac{α}{2}$=$±\frac{1}{2}$或無解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若函數(shù)y=f(x)對?x∈R恒有f(x+1)=f(x-1)=-f(1-x)成立,且y=f(x)不是常值函數(shù),則函數(shù)y=f(x)在區(qū)間[-3,3]上的零點至少有( 。
A.3個B.4個C.6個D.7個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.以下四個命題,屬于組合問題的是( 。
A.從3個不同的小球中,取出2個排成一列
B.老師在排座位時將甲、乙兩位同學(xué)安排為同桌
C.在電視節(jié)目中,主持人從100位幸運觀眾中選出2名幸運之星
D.從某班40名學(xué)生中選取5名學(xué)生,并從低到高依次排列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)解方程:${A}_{m}^{3}$=6${C}_{m}^{4}$;
(2)解不等式:${C}_{8}^{x-1}$>3${C}_{8}^{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知直線y=x-2與圓x2+y2=4交于兩點M和N,O是坐標(biāo)原點,則$\overrightarrow{OM}$$•\overrightarrow{ON}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知不等式ax2+bx+2>0的解集為{x|-1<x<2},求不等式2x2+bx+a≤0的解集[-1,$\frac{1}{2}$].

查看答案和解析>>

同步練習(xí)冊答案