8.已知公比小于1的等比數(shù)列{an}的前n項和為Sn,a1=$\frac{2}{3}$且13a2=3S3(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=nan,求數(shù)列{bn}的前項n和Tn

分析 (1)設(shè)等比數(shù)列{an}的公比為q<1,根據(jù)a1=$\frac{2}{3}$,且13a2=3S3(n∈N*).可得13a1q=3a1(1+q+q2),解出即可得出.
(2)bn=nan=$2n×(\frac{1}{3})^{n}$.利用“錯位相減法”與等比數(shù)列的前項n和公式即可得出.

解答 解:(1)設(shè)等比數(shù)列{an}的公比為q<1,∵a1=$\frac{2}{3}$,且13a2=3S3(n∈N*).
∴13a1q=3a1(1+q+q2),化為:3q2-10q+3=0,q<1,解得q=$\frac{1}{3}$.
∴an=$\frac{2}{3}×(\frac{1}{3})^{n-1}$=2×$(\frac{1}{3})^{n}$.
(2)bn=nan=$2n×(\frac{1}{3})^{n}$.
∴數(shù)列{bn}的前項n和Tn=$2[\frac{1}{3}+2×(\frac{1}{3})^{2}+3×(\frac{1}{3})^{3}$+…+$n×(\frac{1}{3})^{n}]$,
∴$\frac{1}{3}{T}_{n}$=2$[(\frac{1}{3})^{2}+2×(\frac{1}{3})^{3}$+…+(n-1)×$(\frac{1}{3})^{n}$+n×$(\frac{1}{3})^{n+1}]$,
∴$\frac{2}{3}{T}_{n}$=2$[\frac{1}{3}+(\frac{1}{3})^{2}+…+(\frac{1}{3})^{n}-n×(\frac{1}{3})^{n+1}]$=2$[\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}-n×(\frac{1}{3})^{n+1}]$=1-$\frac{3+2n}{{3}^{n+1}}$,
∴Tn=$\frac{3}{2}$-$\frac{3+2n}{2×{3}^{n}}$.

點評 本題考查了“錯位相減法”、等比數(shù)列的通項公式及其前項n和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、教育家,楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.在楊輝三角中,第0行的數(shù)1記為C00,第n行從左到右的n+1個數(shù)分別記為Cn0,Cn1,Cn2,…,Cni,…,Cnn.如圖是一個11階楊輝三角:
(1)求第15行中從左到右的第3個數(shù);
(2)試探究在楊輝三角形的某一行能否出現(xiàn)三個連續(xù)的數(shù),使它們的比是3:4:5,并 證明你的結(jié)論;
(3)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35,我們發(fā)現(xiàn)1+3+6+10+15=35,事實上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù).試用含有m,k(m,k∈N*)的數(shù)學(xué)式子表示上述結(jié)論,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C的對邊分別是a,b,c,且(a+c)sinB=2csinA.
(1)若sin(A+B)=2sinA,求cosC;
(2)求證:BC、AC、AB邊上的高依次成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,已知AB=2,BC=5$\sqrt{3}$,cosB=$\frac{4}{5}$,則△ABC的面積是3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖:有一人在∠EOF=60°的V型碼頭內(nèi)位于P點的一艘船上,要想到達O地上岸,現(xiàn)有三種方案:
①自P直接航行到O;
②自P與OE垂直航行到A點登陸,再由陸路乘車直達O;
③自P與OF垂直航行到B點登陸,再由陸路乘車直達O;
現(xiàn)已知陸路車速為船速的2倍,PA=2km,PB=5km,問:選擇哪種方案用時最?并通過計算加以說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在△ABC中,∠ABC=90°,AB=2$\sqrt{3}$,BC=2,P為△ABC內(nèi)一點,∠BPC=90°.       
(Ⅰ)若PB=1,求PA;
(Ⅱ)若∠APB=150°,求tan∠PBA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合M={0,1,2},N={x|-1≤x≤1,x∈Z},則( 。
A.M⊆NB.N⊆MC.M∩N={0,1}D.M∪N=N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.直線x+y+1=0與坐標(biāo)軸圍成的三角形的面積為(  )
A.1B.2C.3D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)數(shù)列{an}為等差數(shù)列,若a1=1,求公差d取何值時,使得a1•a3+a2•a3最。

查看答案和解析>>

同步練習(xí)冊答案