【題目】已知平面向量 , , 滿足| |= ,| |=1, =﹣1,且 ﹣ 與 ﹣ 的夾角為 ,則| |的最大值為( )
A.
B.2
C.
D.4
科目:高中數學 來源: 題型:
【題目】學校將從4名男生和4名女生中選出4人分別擔任辯論賽中的一、二、三、四辯手,其中男生甲不適合擔任一辯手,女生乙不適合擔任四辯手.現(xiàn)要求:如果男生甲入選,則女生乙必須入選.那么不同的組隊形式有_________種.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在[0,+∞)上的函數f(x)滿足:①當x∈[1,2)時, ;②x∈[0,+∞)都有f(2x)=2f(x).設關于x的函數F(x)=f(x)﹣a的零點從小到大依次為x1 , x2 , x3 , …xn , …,若 ,則x1+x2+…+x2n= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(題文)如圖,有一塊半橢圓形鋼板,其長半軸長為,短半軸長為,計劃將此鋼板切割成等腰梯形的形狀,下底是半橢圓的短軸,上底的端點在橢圓上,梯形面積為.
(1)當,時,求梯形的周長(精確到);
(2)記,求面積以為自變量的函數解析式,并寫出其定義域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數y=sinx的圖象向右平移 個單位,再將所得函數圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數y=sin(ωx+φ),(ω>0,|φ|< )的圖象,則( )
A.ω=2,φ=﹣
B.ω=2,φ=﹣
C.ω= ,φ=﹣
D.ω= ,φ=﹣
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.若直線的參數方程為為參數),曲線的極坐標方程為.
(I)求直線的普通方程與曲線的直角坐標方程;
(II)設直線與曲線相交于兩點,若點的直角坐標為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,數列{bn} 的前n項和為Tn , 若Tn≥tn2對n∈N*恒成立,則實數t的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點F為橢圓 的左焦點,且兩焦點與短軸的一個頂點構成一個等邊三角形,直線 與橢圓E有且僅有一個交點M. (Ⅰ)求橢圓E的方程;
(Ⅱ)設直線 與y軸交于P,過點P的直線與橢圓E交于兩不同點A,B,若λ|PM|2=|PA||PB|,求實數λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com