6.已知角α是第四象限角,角α的終邊經(jīng)過點P(4,y),且sinα=$\frac{y}{5}$,則tanα的值是( 。
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$\frac{4}{3}$

分析 利用角α是第四象限角,角α的終邊經(jīng)過點P(4,y),且sinα=$\frac{y}{5}$,求出y,即可求出tanα的值.

解答 解:∵角α是第四象限角,角α的終邊經(jīng)過點P(4,y),且sinα=$\frac{y}{5}$,
∴$\frac{y}{\sqrt{4+{y}^{2}}}$═$\frac{y}{5}$,y<0,
∴y=-3,
∴tanα=-$\frac{3}{4}$.
故選B.

點評 本題考查任意角的三角函數(shù)的定義,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為2,且兩條漸近線與拋物線y2=2px(p>0)的準(zhǔn)線交于A,B兩點,O為坐標(biāo)原點,若${S_{△AOB}}=\sqrt{3}$,則拋物線的方程為y2=4x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.過圓C:(x-4)2+(y+1)2=25上的點M(0,2)作其切線l,且與直線l′:4x-ay+2=0平行,則l′與l間的距離是( 。
A.$\frac{8}{5}$B.$\frac{4}{5}$C.$\frac{28}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.命題“若a2+b2=0,則a=b=0”的逆否命題是(  )
A.若a≠b≠0,則a2+b2≠0B.若a=b≠0,則a2+b2≠0
C.若a≠0且b≠0,則a2+b2≠0D.若a≠0或b≠0,則a2+b2≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知命題p:點M(1,3)不在圓(x+m)2+(y-m)2=16的內(nèi)部,命題q:“曲線C:$\frac{x^2}{m^2}+\frac{y^2}{2m+8}$=1表示焦點在x軸上的橢圓”.若“p且q”是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在平面直角坐標(biāo)系中,O是坐標(biāo)原點,A($\sqrt{3}$,1),將OA繞點O逆時針旋轉(zhuǎn)90°到OB,則點B的坐標(biāo)為(-1,$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.對于平面內(nèi)兩條不重合的直線,記原命題為“若兩條直線平行,則這兩條直線的傾斜角相等”,則該命題及其逆命題、否命題、逆否命題這四個命題中,真命題的個數(shù)是4個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“a<0”是函數(shù)“函數(shù)f(x)=|x-a|+|x|在區(qū)間[0,+∞)上為增函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=ln(x2-2x-3)的單調(diào)遞增區(qū)間是(3,+∞).

查看答案和解析>>

同步練習(xí)冊答案