【題目】在統(tǒng)計(jì)學(xué)中,偏差是指?jìng)(gè)別測(cè)定值與測(cè)定的平均值之差,在成績(jī)統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某刻考試成績(jī)與該科班平均分的差叫某科偏差,班主任為了了解個(gè)別學(xué)生的偏科情況,對(duì)學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進(jìn)行偏差分析,決定從全班40位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績(jī)偏差數(shù)據(jù)如表:
(1)已知與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)若這次考試該班數(shù)學(xué)平均分為120分,物理平均分為92,試預(yù)測(cè)數(shù)學(xué)成績(jī)126分的同學(xué)的物理成績(jī).
參考公式: ,
參考數(shù)據(jù): ,
【答案】(1);(2)94
【解析】試題分析:
(1)根據(jù)所給數(shù)據(jù)及公式可求得, ,即可得到關(guān)于的線性回歸方程;(2)設(shè)出物理成績(jī),可得物理偏差為,又?jǐn)?shù)學(xué)偏差為,代入回歸方程可求得。
試題解析:
(1)由題意計(jì)算得, ,
∴
∴,
故線性回歸方程為
(2)由題意設(shè)該同學(xué)的物理成績(jī)?yōu)?/span>,
則物理偏差為,而數(shù)學(xué)偏差為,
則(1)的結(jié)論可得,
解得,
故可以預(yù)測(cè)這位同學(xué)的物理成績(jī)?yōu)?/span>分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在(0, )上的函數(shù)f(x),f′(x)是它的導(dǎo)函數(shù),且恒有f(x)<f′(x)tanx成立,則( )
A.f( )> f( )
B.f(1)<2f( )sin1
C.f( )>f( )
D. f( )<f( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)在上的最大值;
(3)求證:存在唯一的,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知p: ,q:x2﹣2x+1﹣m2≤0(m>0).若¬p是¬q的充分不必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有以下命題:
①若f(x)=x3+(a﹣1)x2+3x+1沒(méi)有極值點(diǎn),則﹣2<a<4;
②集合M={1,2,zi},i為虛數(shù)單位,N={3,4},M∩N={4},則復(fù)數(shù)z=﹣4i;
③若函數(shù)f(x)= ﹣m有兩個(gè)零點(diǎn),則m< .
其中正確的是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】蘭州一中在世界讀書(shū)日期間開(kāi)展了“書(shū)香校園”系列讀書(shū)教育活動(dòng)。為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書(shū)迷”,低于60分鐘的學(xué)生稱為“非讀書(shū)迷”。
非讀書(shū)迷 | 讀書(shū)迷 | 合計(jì) | |
男 | 15 | ||
女 | 45 |
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書(shū)迷”與性別有關(guān)?
(2)利用分層抽樣從這100名學(xué)生的“讀書(shū)迷”中抽取8名進(jìn)行集訓(xùn),從中選派2名參加蘭州市讀書(shū)知識(shí)比賽,求至少有一名男生參加比賽的概率。
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(x+1)n=a0+a1(x﹣1)+a2(x﹣1)2+a3(x﹣1)3+…+an(x﹣1)n , (其中n∈N*)
(1)求a0及Sn=a1+2a2+3a3+…+nan;
(2)試比較Sn與n3的大小,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的五面體中,面為直角梯形, ,平面 平面, ,△ADE是邊長(zhǎng)為2的正三角形.
(1)證明: 平面;
(2)求點(diǎn)B到平面ACF的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com