10.過點(diǎn)(-1,3)且與直線x-2y+3=0平行的直線方程為( 。
A.x-2y+7=0B.2x+y-1=0C.f(x)D.f(5x)>f(3x+4)

分析 設(shè)過點(diǎn)(-1,3)且與直線x-2y+3=0平行的直線方程為 x-2y+m=0,把點(diǎn)(-1,3)代入直線方程,求出m值即得直線l的方程.

解答 解:設(shè)過點(diǎn)(-1,3)且與直線x-2y+3=0平行的直線方程為 x-2y+m=0,把點(diǎn)(-1,3)代入直線方程得
-1-2×3+m=0,m=7,故所求的直線方程為x-2y+7=0,
故選A.

點(diǎn)評 本題考查用待定系數(shù)法求直線方程的方法,設(shè)過點(diǎn)(-1,3)且與直線x-2y+3=0平行的直線方程為x-2y+m=0是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知定義域為R的函數(shù)$f(x)=\frac{{b-{2^x}}}{{a+{2^x}}}$是奇函數(shù).
(1)求a,b的值;
(2)用定義證明f(x)在(-∞,+∞)上為減函數(shù);
(3)若對于任意t∈R,不等式f(t2-2t)<f(-2t2+k)恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若a1、b1、c1、a2、b2、c2∈R,且都不為零,則“$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$”是“關(guān)于x的不等式a1x2+b1x+c1>0與a2x2+b2x+c2>0的解集相同”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合A={x|log2(x-1)<2},B={x|2<x<6},且A∩B=(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某生產(chǎn)旅游紀(jì)念品的工廠,擬在2017年度進(jìn)行系列促銷活動.經(jīng)市場調(diào)查和測算,該紀(jì)念品的年銷售量x(單位:萬件)與年促銷費(fèi)用t(單位:萬元)之間滿足3-x與t+1成反比例(若不搞促銷活動,紀(jì)念品的年銷售量只有1萬件);已知工廠2017年生產(chǎn)紀(jì)念品的固定投資為3萬元,每生產(chǎn)1萬件紀(jì)念品另外需要投資32萬元.當(dāng)工廠把每件紀(jì)念品的售價定為“年平均每件生產(chǎn)成本的1.5倍”與“年平均每件所占促銷費(fèi)的一半”之和時,則當(dāng)年的產(chǎn)量和銷量相等.(利潤=收入-生產(chǎn)成本-促銷費(fèi)用);
(1)請把該工廠2017年的年利潤y(單位:萬元)表示成促銷費(fèi)t(單位:萬元)的函數(shù);
(2)試問:當(dāng)2017的促銷費(fèi)投入多少萬元時,該工廠的年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對于函數(shù)f(x),若在其定義域內(nèi)存在兩個實數(shù)a,b(a<b),當(dāng)x∈[a,b]時,f(x)的值域也是[a,b],則稱函數(shù)f(x)為“Kobe函數(shù)”.若函數(shù)f(x)=k+$\sqrt{x-1}$是“Kobe函數(shù)”,則實數(shù)k的取值范圍是( 。
A.[-1,0]B.[1,+∞)C.$[{-1,-\frac{3}{4}})$D.$({\frac{3}{4},1}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,PA垂直于矩形ABCD所在平面,AE⊥PB,垂足為E,EF⊥PC垂足為F.
(Ⅰ)設(shè)平面AEF∩PD=G,求證:PC⊥AG;
(Ⅱ)設(shè)PA=$\sqrt{6},AB=\sqrt{3}$,M是線段PC的中點(diǎn),求證:DM∥平面AEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.請你設(shè)計一個倉庫.它的上部是底面圓半徑為5m的圓錐,下部是底面圓半徑為5m的圓柱,且該倉庫的總高度為5m.經(jīng)過預(yù)算,制造該倉庫的圓錐側(cè)面、圓柱側(cè)面用料的單價分別為4百元/m2,1百元/m2,設(shè)圓錐母線與底面所成角為θ,且$θ∈({0,\frac{π}{4}})$.
(1)設(shè)該倉庫的側(cè)面總造價為y,寫出y關(guān)于θ的函數(shù)關(guān)系式;
(2)問θ為多少時,該倉庫的側(cè)面總造價(單位:百元)最少?并求出此時圓錐的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若關(guān)于x的不等式|x-1|+|x-2|>log4a2恒成立,則實數(shù)a的取值范圍為(  )
A.(-2,2)B.(-∞,-2)C.(2,﹢∞)D.(-2,0)∪(0,2)

查看答案和解析>>

同步練習(xí)冊答案