A. | 2f(2)>3f(3) | B. | 2f(2)<3f(3) | C. | 2f(2)=3f(3) | D. | 無法確定 |
分析 構(gòu)造函數(shù)g(x)=xf(x)-$\frac{1}{e}$x,(x>0),求出函數(shù)的單調(diào)性,得到g(2)<g(3),從而求出結(jié)論.
解答 解:令g(x)=xf(x)-$\frac{1}{e}$x,(x>0),
當x∈(0,e)時f(x)+xf′(x)>$\frac{1}{e}$,
當x∈(e,+∞)時f(x)+xf′(x)<$\frac{1}{e}$,
故g(x)在(0,e)遞增,在(e,+∞)遞減,
∴g(2)<g(3),
∴2f(2)-$\frac{2}{e}$<3f(3)-$\frac{3}{e}$,
∴2f(2)<3(3)-$\frac{1}{e}$<3f(3),
故選:B.
點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,構(gòu)造函數(shù)g(x)是解題的關(guān)鍵,本題是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x>1 | B. | 0<x<1 | C. | x>0 | D. | x<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com