設(shè)f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
(n∈N+)則f(k+1)-f(k)=( 。
A、
1
2k+1
B、
1
2k+1
-
1
2k+2
C、
1
2k+1
+
1
2k+2
D、
1
2k+2
考點(diǎn):函數(shù)的值
專題:計(jì)算題
分析:根據(jù)題意求出f(k+1)和f(k),再求出 f(k+1)-f(k)并化簡(jiǎn)即可.
解答: 解:由題意得,f(k+1)=
1
k+2
+
1
k+3
+
1
k+4
+…+
1
2(k+1)

f(k)=
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k

所以f(k+1)-f(k)=
1
2k+1
+
1
2k+2
-
1
k+1
=
1
2k+1
-
1
2k+2
,
故選:B.
點(diǎn)評(píng):本題考查函數(shù)的值,關(guān)鍵是清楚解析式的特點(diǎn)以及變化規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(2,
4
)關(guān)于極點(diǎn)對(duì)稱的點(diǎn)的極坐標(biāo)為( 。
A、(2,
4
B、(2,
4
C、(-2,
4
D、(-2,
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tan(2π+α)=-
1
2
,則
2sinαcosα
sin2α-cos2α
的值是( 。
A、
4
3
B、3
C、-
4
3
D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心為(1,-1),半徑為5的圓的標(biāo)準(zhǔn)方程為( 。
A、(x-1)2+(y+1)2=5
B、(x+1)2+(y-1)2=5
C、(x-1)2+(y+1)2=25
D、(x+1)2+(y-1)2=25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)表示相等函數(shù)的是( 。
A、y=
x2-1
x-1
與 y=x+1
B、y=
3-x3
-1
與y=-x-1
C、y=x0與 y=1
D、y=
x2
與y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)變量X的概率分布規(guī)律為P(X=n)=
a
n(n+1)
(n=1,2,3),其中a是常數(shù),則P(1≤X≤2)的值為( 。
A、
8
9
B、
2
3
C、
1
3
D、
2
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

類比三角形中的性質(zhì):
(1)兩邊之和大于第三邊;
(2)中位線長(zhǎng)等于底邊的一半;
(3)三內(nèi)角平分線交于一點(diǎn);
可得四面體的對(duì)應(yīng)性質(zhì):
(1)任意三個(gè)面的面積之和大于第四個(gè)面的面積;
(2)過四面體的交于同一頂點(diǎn)的三條棱的中點(diǎn)的平面面積等于第四個(gè)面面積的
1
4
;
(3)四面體的六個(gè)二面角的平分面交于一點(diǎn).
其中類比推理結(jié)論正確的有( 。
A、(1)
B、(1)(2)
C、(1)(2)(3)
D、都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖中的曲線是冪函數(shù)y=xn在第一象限的圖象,已知n可取±2,±
1
2
四個(gè)值,則對(duì)應(yīng)于曲線C1、C2、C3、C4的n依次為(  )
A、-2,-
1
2
,
1
2
,2
B、2,
1
2
,-
1
2
,-2
C、-
1
2
,-2,2,
1
2
D、2,
1
2
,-2,-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y>0,x+2y=10,求ω=x2+y2的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案