17.已知△ABC的三個(gè)頂點(diǎn)A(0,-4),B(4,0),C(-6,2),點(diǎn)D,E,F(xiàn)分別為邊BC、CA、AB的中點(diǎn)
(1)求直線DE、EF、FD的方程;
(2)求AB邊上的高線CH所在直線方程.

分析 (1)利用中點(diǎn)坐標(biāo)公式、點(diǎn)斜式即可得出.
(2)利用相互垂直的直線斜率之間的關(guān)系、點(diǎn)斜式即可得出.

解答 解:(1)利用中點(diǎn)公式可得:D(-1,1),E(-3,-1),F(xiàn)(2,-2),
∴kDE=$\frac{-1-1}{-3-(-1)}$=1,可得直線DE的方程為:y-1=(x+1),化為x-y+2=0.
同理可得:直線EF的方程為:x+5y+8=0,直線FD的方程為:x+y=0.
(2)∵kAB=$\frac{4}{4}$=1,
∴kCH=-1.
∴AB邊上的高線CH所在直線方程為:y-2=-(x+6),化為x+y+4=0.

點(diǎn)評 本題考查了中點(diǎn)坐標(biāo)公式、相互垂直的直線斜率之間的關(guān)系、斜率計(jì)算公式、點(diǎn)斜式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若拋物線y2=2px(p>0)上一點(diǎn)M到準(zhǔn)線及對稱軸的距離分別為5和4,若點(diǎn)M在焦點(diǎn)F的右側(cè),則此時(shí)M點(diǎn)的橫坐標(biāo)為1或4,拋物線方程為y2=4x或y2=16x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.寫出下面各遞推公式表示的數(shù)列{an}的通項(xiàng)公式.
(1)a1=1,an+1=2n•an(n≥1);
(2)a1=1,an=an-1+$\frac{1}{n(n-1)}$(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,lga-1gb=1gsinB=-lg$\sqrt{2}$,B為銳角,則A的值是30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知α+β=$\frac{π}{12}$,求$\frac{1-tanα-tanβ-tanα•tanβ}{1+tanα+tanβ-tanα•tanβ}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,AC=1,BC=$\sqrt{3}$,M是邊BC上靠近C的一個(gè)四等分點(diǎn),若N是BC邊上的動(dòng)點(diǎn),則$\overrightarrow{AM}$•$\overrightarrow{AN}$的取值范圍是[$\frac{1}{2}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直角坐標(biāo)平面內(nèi),$\overrightarrow{OA}$=(-1,8),$\overrightarrow{OB}$=(-4,1),$\overrightarrow{OC}$=(1,3),求證:△ABC為等腰直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知五邊形ABECD有一個(gè)直角梯形ABCD與一個(gè)等邊三角形BCE構(gòu)成,如圖1所示,AB⊥BC,且AB=2BC=2CD,將梯形ABCD沿著BC折起,形成如圖2所示的幾何體,且AB⊥平面BEC.
(1)求證:平面ABE⊥平面ADE;
(2)求二面角A-DE-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C,D的點(diǎn),AE=3,圓O的直徑為9.
(Ⅰ)求證:平面ABCD⊥平面ADE; 
(Ⅱ)求三棱錐D-ABE的體積.

查看答案和解析>>

同步練習(xí)冊答案