13.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AB的延長(zhǎng)線與DC的延長(zhǎng)線交于點(diǎn)E,且CB=CE.
(1)證明:∠D=∠E;
(2)設(shè)AD不是⊙O的直徑,AD的中點(diǎn)為M,且MB=MC,證明:△ADE為等邊三角形;
(3)若BC=1,且△ADE的外接圓半徑為2,求四邊形ABCD的面積.

分析 (1)利用四邊形ABCD是⊙O的內(nèi)接四邊形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,可證明∠D=∠E;
(2)設(shè)BC的中點(diǎn)為N,連接MN,證明AD∥BC,可得∠A=∠CBE,進(jìn)而得∠A=∠E,可證明△ADE為等邊三角形;
(3)根據(jù)△ADE外接圓的半徑求出高與邊長(zhǎng),利用四邊形ABCD是梯形,求出梯形的高h(yuǎn),即可計(jì)算梯形的面積.

解答 (1)證明:∵四邊形ABCD是⊙O的內(nèi)接四邊形,
∴∠D=∠CBE,
∵CB=CE,
∴∠E=∠CBE,
∴∠D=∠E;
(2)證明:設(shè)BC的中點(diǎn)為N,連接MN,則由MB=MC知MN⊥BC,
∴O在直線MN上,
∵AD不是⊙O的直徑,AD的中點(diǎn)為M,
∴OM⊥AD,
∴AD∥BC,
∴∠A=∠CBE,
∵∠CBE=∠E,
∴∠A=∠E,
由(1)知,∠D=∠E,
∴△ADE為等邊三角形;
(3)△ADE是等邊三角形,且外接圓的半徑為2,
∴△ADE的高為3,
且$\frac{2}{3}$×$\frac{\sqrt{3}}{2}$AD=2,
∴AD=2$\sqrt{3}$;
又BC=1,BC∥AD,
∴四邊形ABCD是梯形,設(shè)梯形的高為h,
則$\frac{3-h}{3}$=$\frac{1}{2\sqrt{3}}$,
解得h=$\frac{3(2\sqrt{3}-1)}{2\sqrt{3}}$;
∴梯形ABCD的面積為
S=$\frac{1}{2}$×(2$\sqrt{3}$+1)×$\frac{3(2\sqrt{3}-1)}{2\sqrt{3}}$=$\frac{11\sqrt{3}}{4}$.

點(diǎn)評(píng) 本題考查了圓的內(nèi)接四邊形性質(zhì),也考查了三角形外接圓以及求面積的應(yīng)用問題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)y=ax2+2x+1的圖象與直線y=3x相切,則a=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若$\overrightarrow{a}$=(1,1),$\overrightarrow$=(1,-1),$\overrightarrow{c}$=(1,2).用$\overrightarrow{a},\overrightarrow$表示$\overrightarrow{c}$,則$\overrightarrow{c}$=$\frac{3}{2}\overrightarrow{a}$-$\frac{1}{2}\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,E、F分別是棱AB和BC的中點(diǎn).
(1)求二面角B-FB1-E的大小,
(2)求點(diǎn)D到平面B1EF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在四棱錐P-ABCD 中,△PAD 為等邊三角形,底面ABCD為等腰梯形,滿足AB∥CD,AD=DC=$\frac{1}{2}$AB=2,且平面PAD⊥平面ABCD.
(Ⅰ)證明:BD⊥平面PAD;
(Ⅱ)求點(diǎn)C到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.有兩塊直角三角板:一塊三角板的兩條直角邊的長(zhǎng)分別為1,$\sqrt{3}$;另一塊三角板的兩條直角邊的長(zhǎng)均為$\sqrt{3}$,已知這兩塊三角板有兩對(duì)頂點(diǎn)重合,且構(gòu)成90°的二面角,則不重合的兩個(gè)頂點(diǎn)間的距離等于2或$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖2所示.
(1)求證:BC⊥平面ACD;
(2)求點(diǎn)C到平面ABD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.將3個(gè)半徑為1的球和一個(gè)半徑為$\sqrt{2}-1$的球疊為兩層放在桌面上,上層只放一個(gè)較小的球,四個(gè)球兩兩相切,那么上層小球的最高點(diǎn)到桌面的距離是( 。
A.$\frac{{3\sqrt{2}+\sqrt{6}}}{3}$B.$\frac{{\sqrt{3}+2\sqrt{6}}}{3}$C.$\frac{{\sqrt{2}+2\sqrt{6}}}{3}$D.$\frac{{2\sqrt{2}+\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點(diǎn),焦點(diǎn)F在x軸上,D為短軸上一個(gè)端點(diǎn),且△DOF的內(nèi)切圓的半徑為$\frac{\sqrt{3}-1}{2}$,離心率e是方程2x2-5x+2=0的一個(gè)根.
(1)求橢圓C的方程;
(2)設(shè)過原點(diǎn)的直線與橢圓C交于A,B兩點(diǎn),過橢圓C的右焦點(diǎn)作直線l∥AB交橢圓C于M,N兩點(diǎn),是否存在常數(shù)λ,使得|AB|2=λ|MN|?若存在,請(qǐng)求出λ;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案