1.若$\overrightarrow{a}$=(1,1),$\overrightarrow$=(1,-1),$\overrightarrow{c}$=(1,2).用$\overrightarrow{a},\overrightarrow$表示$\overrightarrow{c}$,則$\overrightarrow{c}$=$\frac{3}{2}\overrightarrow{a}$-$\frac{1}{2}\overrightarrow$.

分析 利用平面向量坐標(biāo)運(yùn)算法則求解.

解答 解:∵$\overrightarrow{a}$=(1,1),$\overrightarrow$=(1,-1),$\overrightarrow{c}$=(1,2),
設(shè)$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$,則$\left\{\begin{array}{l}{x+y=1}\\{x-y=2}\end{array}\right.$,解得x=$\frac{3}{2}$,y=-$\frac{1}{2}$,
∴$\overrightarrow{c}$=$\frac{3}{2}\overrightarrow{a}$-$\frac{1}{2}\overrightarrow$.
故答案為:$\frac{3}{2}\overrightarrow{a}$-$\frac{1}{2}\overrightarrow$.

點(diǎn)評(píng) 本題考查向量的坐標(biāo)運(yùn)算,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意平面向量坐標(biāo)運(yùn)算法則的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)是滿(mǎn)足f(x+2)=-f(x)的奇函數(shù),且當(dāng)0≤x<1時(shí),f(x)=(x-$\frac{1}{2}$)2-1.
(1)證明:4是函數(shù)f(x)的一個(gè)周期;
(2)求當(dāng)7<x≤8時(shí),f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.使得(x+$\sqrt{3}$i)3=log${\;}_{\sqrt{2}}$$\frac{1}{16}$成立的實(shí)數(shù)x為±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,1),若向量$\overrightarrow{a}$+$λ\overrightarrow$與$\overrightarrow$垂直,則λ=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知sinβ+cosβ=$\frac{1}{5}$,β∈[0,π],則tanβ的值為-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)log29=a與log25=b,試用a和b來(lái)表示log275.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.從一個(gè)邊長(zhǎng)為2的等邊三角形的中心、各邊中點(diǎn)及三個(gè)頂點(diǎn)這7個(gè)點(diǎn)中任取兩個(gè)點(diǎn),則這兩點(diǎn)間的距離小于1的概率是( 。
A.$\frac{1}{7}$B.$\frac{3}{7}$C.$\frac{4}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AB的延長(zhǎng)線(xiàn)與DC的延長(zhǎng)線(xiàn)交于點(diǎn)E,且CB=CE.
(1)證明:∠D=∠E;
(2)設(shè)AD不是⊙O的直徑,AD的中點(diǎn)為M,且MB=MC,證明:△ADE為等邊三角形;
(3)若BC=1,且△ADE的外接圓半徑為2,求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,已知ABCD是邊長(zhǎng)為2的正方形,EA⊥平面ABCD,F(xiàn)C∥EA,設(shè)EA=1
(Ⅰ)證明:EF⊥BD;
(Ⅱ)求點(diǎn)C到平面BDE的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案