在△ABC中,邊a,b,c所對(duì)角分別為A,B,C,且
sinA
a
=
cosB
b
=
cosC
c
,則∠A=
 
考點(diǎn):正弦定理
專(zhuān)題:解三角形
分析:在△ABC中,由正弦定理和條件可得sinB=cosB,且 sinC=cosC,從而得到 B=C=
π
4
,A=
π
2
,故△ABC的形狀為 等腰直角三角形.
解答: 解:在△ABC中,由正弦定理可得
a
sinA
=
b
sinB
=
c
sinC
sinA
a
=
cosB
b
=
cosC
c
,
∴sinB=cosB,且sinC=cosC,
故 B=C=
π
4
,A=
π
2
,
故答案為:
π
2
點(diǎn)評(píng):本題主要考查正弦定理的應(yīng)用,三角形的內(nèi)角和公式,判斷三角形的形狀的方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={y|x+y=2},N={(x,y)|x-y=4},那么集合M∩N為( 。
A、{x=3,y=-1}
B、{(x,y)|x=3或y=-1}
C、∅
D、{(3,-1)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-x (a>1)
(1)求證:
f′(x1)+f′(x2)
2
≥f′(
x1+x2
2
);
(2)求函數(shù)f(x)的最小值,并求最小值小于0時(shí)的a取值范圍;
(3)令S(n)=C
 
1
n
f′(1)+C
 
2
n
f′(2)+…+C
 
n-1
n
f′(n-1),求證:S(n)≥(2n-2)f′(
n
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求二次函數(shù)y=2x2在[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

比較下列各組數(shù)的大小:
(1)2.8-
3
2
,0.8-
1
2

(2)(
2
3
 
1
3
,1.5-0.2,1.30.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a=1,a+
a2
2
+
a3
3
+…+
an
a
=2n-1(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn
(3)求存在n∈N*,使得an≤n(n+1)λ成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(x2-2014x-2015),ln(x-2011)的零點(diǎn)有( 。
A、3個(gè)B、2個(gè)C、1個(gè)D、0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各式的值:
(1)(
4
9
 
1
2
-(
64
27
 
2
3
+2-2
(2)log49-log2
3
32
+2 log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線a2x-b2y=1,其中a、b∈R,且ab≠0,則傾斜角a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案