分析 取B(0,2),A(0,-2),則E($\sqrt{3}$,1),T(2,0),可得$\overrightarrow{AT}$=(2,2),$\overrightarrow{TE}$=($\sqrt{3}$-2,1),即可求出|$\overrightarrow{AT}$|×|$\overrightarrow{TE}$|.
解答 解:取B(0,2),A(0,-2),則E($\sqrt{3}$,1),T(2,0),
∴$\overrightarrow{AT}$=(2,2),$\overrightarrow{TE}$=($\sqrt{3}$-2,1)
∴|$\overrightarrow{AT}$|×|$\overrightarrow{TE}$|=$\sqrt{4+4}$•$\sqrt{(\sqrt{3}-2)^{2}+{1}^{2}}$=4($\sqrt{3}$-1).
故答案為:4($\sqrt{3}$-1).
點評 本題考查直線與圓的位置關(guān)系,考查向量的計算,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | 5 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 18 | B. | 26 | C. | 28 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com