6.函數(shù)f(x)=x3+x+1的圖象在點(1,3)處的切線方程為4x-y-1=0.

分析 先求切線斜率,即y′|x=1,然后由點斜式即可求出切線方程.

解答 解:y′=3x2+1,y′|x=1=3+1=4,即函數(shù)y=x3+x+1在點(1,3)處的切線斜率是4,
所以切線方程為:y-3=4(x-1),即4x-y-1=0.
故答案為:4x-y-1=0.

點評 本題考查利用導(dǎo)數(shù)研究曲線上某點的切線方程問題,函數(shù)在某點處的導(dǎo)數(shù)為該點處的切線斜率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow a=(8,\frac{1}{2}),\overrightarrow b=(x,1)$,其中x>0,若$(\overrightarrow a-2\overrightarrow b)∥(2\overrightarrow a+\overrightarrow b)$,則x=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.給出以下五個結(jié)論:
①經(jīng)過A(x1,y1),B(x2,y2)兩點的直線的方程為$\frac{{y-{y_1}}}{{{y_2}-{y_1}}}=\frac{{x-{x_1}}}{{{x_2}-{x_1}}}$;
②以A(x1,y1),B(x2,y2)為直徑的兩個端點的圓的方程為(x-x1)(x-x2)+(y-y1)(y-y2)=0;
③平面上到兩個定點F1,F(xiàn)2的距離的和為常數(shù)2a的點的軌跡是橢圓;
④平面上到兩個定點F1,F(xiàn)2的距離的差為常數(shù)2a(2a<|F1F2|)的點的軌跡是雙曲線;
⑤平面上到定點F和到定直線l的距離相等的點的軌跡是拋物線.
其中正確結(jié)論有( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)P(4,0),A、B是圓C:x2+y2=4上關(guān)于x軸對稱的任意兩個不同的點,連接PB交圓C于另一點E,直線AE與x軸交于點T,則|$\overrightarrow{AT}$|×|$\overrightarrow{TE}$|=4($\sqrt{3}$-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題:
①平行于同一平面的兩直線相互平行;②平行于同一直線的兩平面相互平行;
③垂直于同一平面的兩平面相互平行;④垂直于同一直線的兩平面相互平行;
⑤垂直于同一直線的兩直線相互平行.
其中正確的有( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓O:x2+y2=5和定點A(4,3),由圓O外一點P(a,b)向圓O引切線PQ,切點為Q,且滿足|PQ|=|PA|
(1)求實數(shù)a、b間滿足的等量關(guān)系;
(2)求線段PQ長的最小值;
(3)若以P為圓心所作的圓P與圓O有公共點,試求半徑取最小值時圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=b•ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過點A(1,6),B(3,24).
(1)求f(x)的表達(dá)式;
(2)設(shè)函數(shù)g(x)=f(x)-2×3x,求g(x+1)>g(x)時x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,已知點$A(-\sqrt{2},0)$,$B(\sqrt{2},0)$,E為動點,且直線EA與直線EB的斜率之積為λ(λ≠0)
(1)求動點E的軌跡方程,若動點E的軌跡和點A、B合并構(gòu)成曲線C,討論曲線C的形狀;
(2)當(dāng)λ=-$\frac{1}{2}$時,記曲線C的右焦點為F2,過點F2的直線l1,l2分別交曲線C于點P,Q和點M,N(點P、M、Q、N按逆時針順序排列),且l1⊥l2,求四邊形PMQN面積的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx+$\frac{a+e-2}{x}$(a>0).
(1)當(dāng)a=2時,求出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若不等式f(x)≥a對于x>0的一切值恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案