16.某幾何體的三視圖如圖所示,若該幾何體的體積為3$\sqrt{7}$,則側(cè)視圖中線段的長度x的值是( 。
A.5B.4C.2$\sqrt{7}$D.$\sqrt{7}$

分析 作出直觀圖,根據(jù)體積求出側(cè)視圖三角形的底邊即四棱錐的高即可.

解答 解:由三視圖可知幾何體為側(cè)放的四棱錐,作出直觀圖如圖所示:
由三視圖可知AB⊥平面BCD,DE⊥平面BCD,BD⊥CD,AB=3,DE=$\frac{3}{2}$.BD=4.
∴四棱錐的底面積S=$\frac{1}{2}×(3+\frac{3}{2})×4$=9,
∴三棱錐的體積V=$\frac{1}{3}S•CD$=3CD=3$\sqrt{7}$.
∴CD=$\sqrt{7}$.
∴側(cè)視圖三角形的底邊長為$\sqrt{7}$,由三視圖的數(shù)量關(guān)系可知側(cè)視圖三角形的高為3,
∴x=$\sqrt{{3}^{2}+7}$=4.
故選:B.

點(diǎn)評(píng) 本題考查了棱錐的三視圖和結(jié)構(gòu)特征,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦點(diǎn)為F1,上頂點(diǎn)為B2,右頂點(diǎn)為A2,過點(diǎn)A2作x軸的垂線交直線F1B2于點(diǎn)P,若|PA2|=3b,則橢圓的離心率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=\;{sin^2}\frac{x}{2}+\frac{{\sqrt{3}}}{2}sinx-\frac{1}{2}$.
(Ⅰ)求$f(\frac{π}{3})$的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間$[-\frac{π}{6},\frac{5π}{6}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知ω為正整數(shù),若函數(shù)f(x)=sin(ωx)在區(qū)間$(\frac{π}{6},\frac{π}{3})$上不單調(diào),則最小的正整數(shù)ω=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若直線l:ax+y-2-a=0在x軸和y軸上的截距相等,則直線l的斜率為( 。
A.1B.-1C.-2或1D.-1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F(1,0),設(shè)A,B為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),AF的中點(diǎn)為M,BF的中點(diǎn)為N,原點(diǎn)O在以線段MN為直徑的圓上,若直線AB的斜率k滿足0<k≤$\frac{\sqrt{3}}{3}$,則橢圓離心率e的取值范圍為[$\frac{\sqrt{6}}{3}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,$\overrightarrow{a}$•$\overrightarrow$=-6$\sqrt{2}$.求:
(1)<$\overrightarrow{a}$,$\overrightarrow$>;
(2)(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+2$\overrightarrow$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)y=f(x)的定義域?yàn)镽+,且f(xy)=f(x)+f(y),f(8)=3,則f(2$\sqrt{2}$)等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知直線l⊥平面α,直線m?平面β,則下列四個(gè)命題中,正確的命題是( 。
A.若α⊥β,則l∥mB.若α⊥β,則l⊥mC.若l⊥m,則α∥βD.若l∥m,則α⊥β

查看答案和解析>>

同步練習(xí)冊(cè)答案