分析 通過幾何法得到|F1C|=|CO|=$\frac{1}{2}$,由$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-1}=1}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,可得到A點(diǎn)坐標(biāo),從而求出OA的斜率,由直線AB斜率為0<k≤$\frac{\sqrt{3}}{3}$,求出a的取值范圍,從而求出e的取值范圍.
解答 解:記線段MN與x軸交點(diǎn)為C.
AF1的中點(diǎn)為M,BF1的中點(diǎn)為N,
∴MN∥AB,|F1C|=|CO|=$\frac{1}{2}$,
∵A、B為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),
∴|CM|=|CN|.
∵原點(diǎn)O在以線段MN為直徑的圓上,
∴|CO|=|CM|=|CN|=$\frac{1}{2}$.
∴|OA|=|OB|=c=1.
∵|OA|>b,
∴a2=b2+c2<2c2,
∴e=$\frac{c}{a}$>$\frac{\sqrt{2}}{2}$.
設(shè)A(x,y),
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-1}=1}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,
得$\left\{\begin{array}{l}{{x}^{2}={a}^{2}(2-{a}^{2})}\\{{y}^{2}=1-2{a}^{2}+{a}^{4}}\end{array}\right.$.
∵直線AB斜率為0<k≤$\frac{\sqrt{3}}{3}$,
∴0<$\frac{1-2{a}^{2}+{a}^{4}}{{a}^{2}(2-{a}^{2})}$≤$\frac{1}{3}$,
∴$\frac{1}{2}$≤a2≤$\frac{3}{2}$,
即為$\frac{\sqrt{2}}{2}$≤a≤$\frac{\sqrt{6}}{2}$,
∴e=$\frac{c}{a}$=$\frac{1}{a}$∈[$\frac{\sqrt{6}}{3}$,$\sqrt{2}$],
由于0<e<1,
∴離心率e的取值范圍為[$\frac{\sqrt{6}}{3}$,1).
故答案為:[$\frac{\sqrt{6}}{3}$,1).
點(diǎn)評(píng) 本題考查橢圓的方程和性質(zhì),主要考查橢圓方程的運(yùn)用,同時(shí)考查圓的性質(zhì)和直線斜率公式的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1008 | B. | 0 | C. | 2016 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{16}{3}$ | B. | 16 | C. | 32 | D. | $\frac{32}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 2$\sqrt{7}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>0 | B. | 0<a≤1 | C. | a≥1 | D. | a≤1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=cosx在第二象限是減函數(shù) | B. | y=tanx在定義域內(nèi)是增函數(shù) | ||
C. | y=|cos(2x+$\frac{π}{3}$)|的周期是$\frac{π}{2}$ | D. | y=sin|x|是周期為2π的偶函數(shù) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com