A. | $\frac{24}{5}$ | B. | 5 | C. | 25 | D. | 24 |
分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí)先求出a,b的關(guān)系,然后利用基本不等式求$\frac{2}{a}+\frac{3}$的最小值.
解答 解:由z=ax+by(a>0,b>0)得y=-$\frac{a}$x+$\frac{z}$,
作出可行域如圖:
∵a>0,b>0,
∴直線y=-$\frac{a}$x+$\frac{z}$的斜率為負(fù),且截距最大時(shí),z也最大.
平移直線y=-$\frac{a}$x+$\frac{z}$,
,由圖象可知當(dāng)y=-$\frac{a}$x+$\frac{z}$經(jīng)過(guò)點(diǎn)A時(shí),
直線的截距最大,此時(shí)z也最大.
由$\left\{\begin{array}{l}{3x-y-6=0}\\{x-y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=6}\end{array}\right.$,即A(4,6).
此時(shí)z=4a+6b=10,
即2a+3b-5=0,
即$\frac{2a}{5}+\frac{3b}{5}$=1,
則$\frac{2}{a}+\frac{3}$的最小值為($\frac{2}{a}+\frac{3}$)($\frac{2a}{5}+\frac{3b}{5}$)=$\frac{4}{5}+\frac{9}{5}+\frac{6a}{5b}+\frac{6b}{5a}$≥$\frac{13}{5}$+2×$\frac{6}{5}$=5,
當(dāng)且僅當(dāng)$\frac{6a}{5b}=\frac{6b}{5a}$,即a=b=1時(shí),取等號(hào),
故$\frac{2}{a}+\frac{3}$的最小值為5;
故選:B.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用以及基本不等式的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法;屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | mqk+l-1 | B. | mql | C. | mql-1 | D. | mql+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m>9或m<-1 | B. | m>1或m<-9 | C. | -9<m<1 | D. | -1<m<9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com