4.已知函數(shù)f(x)=xlnx.
(1)求函數(shù)f(x)的極值點(diǎn);
(2)設(shè)函數(shù)g(x)=f(x)-2(x-1),求函數(shù)g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù)).

分析 (1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)的極值的關(guān)系即可求出極值點(diǎn);
(2)先求導(dǎo),再判斷g(x)在[1,e]上的單調(diào)性,根據(jù)單調(diào)性即可求出最值.

解答 解:(1)f′(x)=lnx+1,x>0,由f′(x)=0,得x=$\frac{1}{e}$,
所以f(x)在區(qū)間(0,$\frac{1}{e}$)上單調(diào)遞減,在區(qū)間($\frac{1}{e}$,+∞)上單調(diào)遞增.
所以,x=$\frac{1}{e}$是函數(shù)f(x0的極小值點(diǎn),極大值點(diǎn)不存在.
(2)g(x)=f(x)-2(x-1)=xlnx-2x+1  則g′(x)=lnx-1,
由g′(x)=0,得x=e,g(x)在[1,e]上單調(diào)遞減,
所以g(x)的最小值為g(e)=2-e.

點(diǎn)評 本題考查了導(dǎo)數(shù)和函數(shù)的極值和最值的關(guān)系,以及考查了運(yùn)算能力和轉(zhuǎn)化能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(x-1)e-x
(I)求f(x)的單調(diào)區(qū)間;
(II)若對?x∈[0,+∞),都有f(x)≤$\frac{1}{{c}^{2}}$,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,3),$\overrightarrow{c}$=(4,1),若用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{c}$,則$\overrightarrow{c}$=( 。
A.$\overrightarrow{a}$-2$\overrightarrow$B.2$\overrightarrow{a}$-$\overrightarrow$C.2$\overrightarrow{a}$+$\overrightarrow$D.$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.西部某縣教委將7位大學(xué)生志愿者(4男3女)分成兩組,分配到兩所小學(xué)支教,若要求女生不能單獨(dú)成組,且每組最多5人,則不同的分配方案共有( 。
A.36種B.68種C.104種D.110種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.△ABC中,若a,b,c成等比數(shù)列,則B的取值范圍為(0,$\frac{π}{3}$),$\frac{sinA+cosAtanC}{sinB+cosBtanC}$的取值范圍為($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{5}+1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題錯(cuò)誤的是( 。
A.命題“若m≤0,則方程x2+x+m=0有實(shí)數(shù)根”的逆否命題為:“若方程x2+x+m=0無實(shí)數(shù)根,則m>0”
B.“x2-x-2=0”是“x=2”的必要不充分條件
C.若p∧q為假命題,則p,q中必有一真一假
D.命題“在△ABC中,a=b?A=B?sinA=sinB”為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=2x+sinx+ln($\sqrt{{x}^{2}+1}$+x),若不等式f(3x-9x)+f(m•3x-3)<0對任意x∈R均成立,則m的取值范圍為(  )
A.(-∞,2$\sqrt{3}$-1)B.(-∞,-2$\sqrt{3}$+1)C.(-2$\sqrt{3}$+1,2$\sqrt{3}$-1)D.(-2$\sqrt{3}$+1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=ax+1-2的圖象恒過點(diǎn)A(其中實(shí)數(shù)a滿足a>0且a≠1),若點(diǎn)A在直線mx+ny+2=0上,且mn>0,則$\frac{1}{m}$+$\frac{1}{n}$的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=logax+1(a>0且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線 $\frac{x}{m}$+$\frac{y}{n}$-4=0(m>0,n>0)上,則$\frac{1}{m}$+$\frac{1}{n}$=4;m+n的最小值為1.

查看答案和解析>>

同步練習(xí)冊答案