14.已知函數(shù)f(x)=(x-1)e-x
(I)求f(x)的單調(diào)區(qū)間;
(II)若對(duì)?x∈[0,+∞),都有f(x)≤$\frac{1}{{c}^{2}}$,求實(shí)數(shù)c的取值范圍.

分析 (I)求導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù)求f(x)的單調(diào)區(qū)間;
(II)若對(duì)?x∈[0,+∞),都有f(x)≤$\frac{1}{{c}^{2}}$,求出函數(shù)f(x)的最大值,可得不等式,即可求實(shí)數(shù)c的取值范圍.

解答 解:(I)$f'(x)=\frac{2-x}{e^x}$,…(2分)
由f'(x)>0,得x<2;由f'(x)<0,得x>2,
∴f(x)的單調(diào)遞增區(qū)間為(-∞,2),單調(diào)遞減區(qū)間為(2,+∞).…(6分)
(II)由(I)知,f(x)在區(qū)間(0,2)單調(diào)遞增,在區(qū)間(2,+∞)單調(diào)遞減,…(8分)
∴$f{(x)_{max}}=f(2)=\frac{1}{e^2}$,…(10分)
∴$\frac{1}{e^2}≤\frac{1}{c^2}$,c2≤e2且c≠0,
∴實(shí)數(shù)c的取值范圍為-e≤c≤e且c≠0.…(12分)

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求單調(diào)區(qū)間和單調(diào)性的判斷,同時(shí)考查函數(shù)的最大值,考查恒成立問題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=48x-x3,x∈[-3,5]
(1)求單調(diào)區(qū)間;
(2)求最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax2+1,(a>0),g(x)=x3+bx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值;
(2)當(dāng)a2=4b時(shí),求函數(shù)y=f(x)+g(x)在(-∞,0]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)=ex(lnx+1)在[$\frac{1}{e^2}$,1]上的最小值為m,則ln|m|的值是( 。
A.0B.$\frac{1}{e}$C.$\frac{1}{e^2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx-ax.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)a<1時(shí),證明:對(duì)?x∈(0,+∞),恒有f(x)<-$\frac{lnx}{x}$+(1-a)x+1-a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.用秦九韶算法求函數(shù)f(x)=x5+x3+x2+x+1,當(dāng)x=3時(shí)的函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若函數(shù)f(x)=-$\frac{1}{2}$x2+blnx在x=1處取得極值.
(1)求b的值.
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)在[1,e]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列說法正確的是( 。
A.已知命題p:?x0>0,2x0=3,則¬p是?x≤0,2x≠3
B.“p∧q為假命題”是“p∨q為假命題”的充分不必要條件
C.命題“?x∈(0,1),lnx+x2=0”是真命題
D.命題“?x∈R,sinx<x”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=xlnx.
(1)求函數(shù)f(x)的極值點(diǎn);
(2)設(shè)函數(shù)g(x)=f(x)-2(x-1),求函數(shù)g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案