【題目】已知從“神十”飛船帶回的某種植物種子每粒成功發(fā)芽的概率都為 ,某植物研究所進行該種子的發(fā)芽實驗,每次實驗種一粒種子,每次實驗結(jié)果相互獨立,假定某次實驗種子發(fā)芽則稱該次實驗是成功的,如果種子沒有發(fā)芽,則稱該次實驗是失敗的.若該研究所共進行四次實驗,設(shè)ξ表示四次實驗結(jié)束時實驗成功的次數(shù)與失敗的次數(shù)之差的絕對值. (Ⅰ)求隨機變量ξ的分布列及ξ的數(shù)學(xué)期望E(ξ);
(Ⅱ)記“不等式ξx2﹣ξx+1>0的解集是實數(shù)集R”為事件A,求事件A發(fā)生的概率P(A).

【答案】解:(Ⅰ)四次實驗結(jié)束時,實驗成功的次數(shù)可能為0,1,2,3,4, 相應(yīng)地,實驗失敗的次數(shù)可能為4,3,2,1,0,
所以ξ的可能取值為4,2,0.

,

所以ξ的分別列為:

ξ

0

2

4

P

期望
(Ⅱ)ξ的可能取值為0,2,4.
當(dāng)ξ=0時,不等式為1>0對x∈R恒成立,解集為R;
當(dāng)ξ=2時,不等式為2x2﹣2x+1>0,解集為R;
ξ=4時,不等式為4x2﹣4x+1>0,解集為 ,不為R,
所以
【解析】(Ⅰ)四次實驗結(jié)束時,實驗成功的次數(shù)可能為0,1,2,3,4,實驗失敗的次數(shù)可能為4,3,2,1,0,ξ的可能取值為4,2,0.分別求出相應(yīng)的概率,由此能求出ξ的分布列和期望.(Ⅱ)ξ的可能取值為0,2,4.當(dāng)ξ=0時,不等式為1>0對x∈R恒成立,解集為R;當(dāng)ξ=2時,不等式為2x2﹣2x+1>0,解集為R;ξ=4時,不等式為4x2﹣4x+1>0,解集為 ,不為R,由此能求出事件A發(fā)生的概率P(A).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,不等式 的解集為[-1,5]
(1)求實數(shù) 的值;
(2)若 恒成立,求實數(shù) 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的高一、高二、高三共有學(xué)生1350人,其中高一500人,高三比高二少50人,為了解該校學(xué)生健康狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有高一學(xué)生120人,則該樣本中的高二學(xué)生人數(shù)為(
A.80
B.96
C.108
D.110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立坐標(biāo)系,直線l的參數(shù)方程為 ,(t為參數(shù)),曲線C1的方程為ρ(ρ﹣4sinθ)=12,定點A(6,0),點P是曲線C1上的動點,Q為AP的中點.
(1)求點Q的軌跡C2的直角坐標(biāo)方程;
(2)直線l與直線C2交于M,N兩點,若|MN|≥2 ,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=a﹣x2 ≤x≤e,e為自然對數(shù)的底數(shù))與h(x)=2lnx的圖像上存在關(guān)于x軸對稱的點,則實數(shù)a的取值范圍是(
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,分別在x軸與直線 上從左向右依次取點Ak、Bk , k=1,2,…,其中A1是坐標(biāo)原點,使△AkBkAk+1都是等邊三角形,則△A10B10A11的邊長是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx,g(x)=ax+ ﹣3(a∈R).
(1)當(dāng)a=2時,解關(guān)于x的方程g(ex)=0(其中e為自然對數(shù)的底數(shù));
(2)求函數(shù)φ(x)=f(x)+g(x)的單調(diào)增區(qū)間;
(3)當(dāng)a=1時,記h(x)=f(x)g(x),是否存在整數(shù)λ,使得關(guān)于x的不等式2λ≥h(x)有解?若存在,請求出λ的最小值;若不存在,請說明理由.(參考數(shù)據(jù):ln2≈0.6931,ln3≈1.0986).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|ax﹣1|﹣(a﹣1)x.
(i) 當(dāng)a=2時,滿足不等式f(x)>0的x的取值范圍為;
(ii) 若函數(shù)f(x)的圖象與x軸沒有交點,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校計劃面向高一年級1200名學(xué)生開設(shè)校本選修課程,為確保工作的順利實施,先按性別進行分層抽樣,抽取了180名學(xué)生對社會科學(xué)類,自然科學(xué)類這兩大類校本選修課程進行選課意向調(diào)查,其中男生有105人.在這180名學(xué)生中選擇社會科學(xué)類的男生、女生均為45人.
(Ⅰ)分別計算抽取的樣本中男生及女生選擇社會科學(xué)類的頻率,并以統(tǒng)計的頻率作為概率,估計實際選課中選擇社會科學(xué)類學(xué)生數(shù);
(Ⅱ)根據(jù)抽取的180名學(xué)生的調(diào)查結(jié)果,完成下列列聯(lián)表.并判斷能否在犯錯誤的概率不超過0.025的前提下認為科類的選擇與性別有關(guān)?

選擇自然科學(xué)類

選擇社會科學(xué)類

合計

男生

女生

合計

附: ,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案