(2012•惠州一模)如圖,AB是⊙O的直徑,P是AB延長線上的一點(diǎn).過P作⊙O的切線,切點(diǎn)為C,PC=2,若∠CAP=30°,則⊙O的直徑AB= .

 

 

4

【解析】

試題分析:根據(jù)所給的條件判斷三角形ABC 是一個(gè)含有30°角的直角三角形,得到直角邊與斜邊的關(guān)系,即直角邊與直徑之間的關(guān)系,根據(jù)切割線定理寫出關(guān)系式,把所有的未知量用直徑來表示,解方程得到結(jié)果.

【解析】
連接BC,設(shè)圓的直徑是x

則三角形ABC是一個(gè)含有30°角的三角形,

∴BC=AB,

三角形BPC是一個(gè)等腰三角形,BC=BP=AB,

∵PC是圓的切線,PA是圓的割線,

∴PC2=PB•PC=x•x=,

∵PC=2,

∴x=4,

故答案為:4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:選擇題

若圓x2+y2=4上每個(gè)點(diǎn)的橫坐標(biāo)不變.縱坐標(biāo)縮短為原來的,則所得曲線的方程是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:填空題

(2014•陜西二模)如圖,已知PA是⊙O的切線,A為切點(diǎn).PC是⊙O的一條割線,交⊙O于B,C兩點(diǎn),點(diǎn)Q是弦BC的中點(diǎn).若圓心O在∠APB內(nèi)部,則∠OPQ+∠PAQ的度數(shù)為 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:選擇題

如圖,PA、PB、DE分別與⊙O相切,若∠P=40°,則∠DOE等于( )度.

A.40 B.50 C.70 D.80

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習(xí)卷(解析版) 題型:選擇題

(2010•海門市模擬)如圖,已知∠DEC=80°,弧CD的度數(shù)與弧AB的度數(shù)的差為20°,則∠DAC的度數(shù)為 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習(xí)卷(解析版) 題型:選擇題

如圖,AB為半圓O的直徑,弦AD、BC相交于點(diǎn)P,若CD=3,AB=4,則tan∠BPD等于( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習(xí)卷(解析版) 題型:選擇題

在⊙O中,弦AB=1.8cm,圓周角∠ACB=30°,則⊙O的直徑等于( )

A.3.2cm B.3.4cm C.3.6cm D.4.0cm

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修1-2 3.3綜合法與分析法練習(xí)卷(解析版) 題型:選擇題

要證明+<2,可選擇的方法有以下幾種,其中最合理的是( )

A.綜合法 B.分析法 C.反證法 D.歸納法

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修1-2 2.2結(jié)構(gòu)圖練習(xí)卷(解析版) 題型:選擇題

如圖所示,在“推理與證明”的知識結(jié)構(gòu)圖中,如果要加入“綜合法”,則應(yīng)該放在( )

A.“合情推理”的下位 B.“演繹推理”的下位

C.“直接證明”的下位 D.“間接證明”的下位

 

查看答案和解析>>

同步練習(xí)冊答案