12.已知$\overrightarrow{OA}$=(-1,2),$\overrightarrow{OB}$=(3,m),且$\overrightarrow{OA}⊥\overrightarrow{OB}$,則實數(shù)m的值為( 。
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.6D.-6

分析 令$\overrightarrow{OA}•\overrightarrow{OB}$=0,列方程解出.

解答 解:∵$\overrightarrow{OA}⊥\overrightarrow{OB}$,∴$\overrightarrow{OA}•\overrightarrow{OB}$=-3+2m=0,∴m=$\frac{3}{2}$.
故選:B.

點評 本題考查了向量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.兩位同學(xué)一起去一家單位應(yīng)聘,面試前單位負責(zé)人對他們說:“我們要從面試的人中招聘3人,你們倆同時被招聘進來的概率為$\frac{1}{5}$”. 根據(jù)這位負責(zé)人的話可以推斷出參加面試的人數(shù)為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)y=e${\;}^{1-{x}^{2}}$與x=-1的交點為P.則過P點的切線方程為y=2x+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\vec a=(1,\sqrt{3})$,$\vec b=(3,m)$,若$\vec a,\vec b$的夾角為$\frac{π}{6}$,則實數(shù)m=( 。
A.0B.$2\sqrt{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不共面,則滿足A,B,C,P四點共面的條件是(  )
A.$\overrightarrow{OP}$=2x$\overrightarrow{AO}$+3y$\overrightarrow{BO}$+4z$\overrightarrow{CO}$,且2x+3y+4z=1B.$\overrightarrow{OP}$+$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$
C.$\overrightarrow{AP}$=$\overrightarrow{AB}$+3$\overrightarrow{AC}$D.$\overrightarrow{AP}$=2$\overrightarrow{OB}$-$\overrightarrow{OC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.${(2\sqrt{x}-\frac{1}{{\sqrt{x}}})^6}$的展開式中常數(shù)項是( 。
A.-160B.-20C.20D.160

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知在等差數(shù)列{an}中,數(shù)列的前n項和記為Sn,且S3=0,S5=-5.求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知△ABC滿足$|{\overrightarrow{AB}}|=1,\;|{\overrightarrow{BC}}|=\sqrt{3},\;|{\overrightarrow{CA}}|=1$,則$\overrightarrow{AB}•\overrightarrow{BC}$=-$\frac{3}{2}$,又設(shè)D是BC邊中線AM上一動點,則$\overrightarrow{BD}•\overrightarrow{BC}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.角α=x,且0<x<$\frac{π}{2}$,于是x,sinx,tanx都是實數(shù),請你給x一個具體的值,比較這三個實數(shù)的大小,并且判斷得到的大小關(guān)系是否對區(qū)間(0,$\frac{π}{2}$)上都成立,為什么?

查看答案和解析>>

同步練習(xí)冊答案