4.已知在等差數(shù)列{an}中,數(shù)列的前n項和記為Sn,且S3=0,S5=-5.求{an}的通項公式.

分析 設(shè)出等差數(shù)列的首項和公差,由已知列式求得首項和公差,代入等差數(shù)列的通項公式得答案.

解答 解:設(shè)等差數(shù)列{an}的首項為a1,公差為d,
由題意得$\left\{\begin{array}{l}3{a_1}+3d=0\\ 5{a_1}+10d=-5\end{array}\right.$,
解之得a1=1,d=-1,
故an=a1+(n-1)d=2-n.

點評 本題考查等差數(shù)列的通項公式,考查了等差數(shù)列的前n項和,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓C1:x2+y2=16與圓C2:x2+y2-2x+2ky+k2-29=0,C2關(guān)于直線2x+y+3=0對稱,則兩圓的圓心所在的直線方程是5x+y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.寫出找出1至1000內(nèi)7的倍數(shù)的算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$\overrightarrow{OA}$=(-1,2),$\overrightarrow{OB}$=(3,m),且$\overrightarrow{OA}⊥\overrightarrow{OB}$,則實數(shù)m的值為( 。
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若sin(π-α)=${log_8}\frac{1}{4}$,且α∈(-$\frac{π}{2}$,0),則tan(π+α)=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.過點(2,0)與拋物線x2=8y只有一個公共點的直線有( 。
A.1條B.2條C.3條D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,在四棱錐A-BCD中,△ABD、△BCD均為正三角形,且平面ABD⊥平面BCD,點O,M分別為棱BD,AC的中點,則異面直線AB與OM所成角的余弦值為( 。
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}+\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}的前n項和${S_n}=-{a_n}-{({\frac{1}{2}})^{n-1}}+2$,bn=2nan,cn=2an+1-an(n∈N*)則( 。
A.{bn}是等差數(shù)列,{cn}是等比數(shù)列B.{bn}是等比數(shù)列,{cn}是等差數(shù)列
C.{bn}是等差數(shù)列,{cn}是等差數(shù)列D.{bn}是等比數(shù)列,{cn}是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知非零正實數(shù)x1,x2,x3依次構(gòu)成公差不為零的等差數(shù)列,設(shè)函數(shù)f(x)=xα,α∈{-1,$\frac{1}{2}$,2,3},并記M={-1,$\frac{1}{2}$,2,3}.下列說法正確的是(  )
A.存在α∈M,使得f(x1),f(x2),f(x3)依次成等差數(shù)列
B.存在α∈M,使得f(x1),f(x2),f(x3)依次成等比數(shù)列
C.當(dāng)α=2時,存在正數(shù)λ,使得f(x1),f(x2),f(x3)-λ依次成等差數(shù)列
D.任意α∈M,都存在正數(shù)λ>1,使得λf(x1),f(x2),f(x3)依次成等比數(shù)列

查看答案和解析>>

同步練習(xí)冊答案