17.已知a,b∈R,且a2+b2≤9,求|a|-|b|的最大值.

分析 根據(jù)絕對值不等式的性質求出其最大值即可.

解答 解:|a|-|b|≤|a-b|≤$\sqrt{{a}^{2}{+b}^{2}}$≤$\sqrt{9}$=3,
故|a|-|b|的最大值是3.

點評 本題考查了絕對值不等式的性質,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x(x<0)}\\{-{x}^{2}(x≥0)}\end{array}\right.$,則不等式f[f(x)]≤3的解集為(-∞,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.從某中學的甲乙兩個班中各隨機抽取10名同學,分別測量他們的身高(單位:cm),得到身高數(shù)據(jù)的莖葉圖如圖所示,若從乙班被抽取的這10名同學中再隨機抽取2名身高不低于173cm的同學,則身高為176cm的同學被抽到的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知($\sqrt{x}$-$\frac{a}{x}$)6的展開式中含x${\;}^{\frac{3}{2}}$的項的系數(shù)為30,則實數(shù)a=-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若函數(shù)f(x)=sinωx+cosωx(ω>0)的圖象相鄰兩條對稱軸之間的距離為3,則ω值為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若a、b表示兩條直線,α表示平面,下列命題中的真命題為( 。
A.若a⊥α,a⊥b,則b∥αB.若a∥α,a⊥b,則b⊥αC.若a⊥α,b⊆α,則a⊥bD.若a∥α,b∥α,則a∥b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知各項為正的數(shù)列{an}是等比數(shù)列,且a1=2,a5=32;數(shù)列{bn}滿足:對于任意n∈N*,有a1b1+a2b2+…+anbn=(n-1)•2n+1+2
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的通項公式;
(3)在數(shù)列{an}的任意相鄰兩項ak與ak+1之間插入k個(-1)kbk(k∈N*)后,得到一個新的數(shù)列{cn}.求數(shù)列{cn}的前2016項之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}的奇數(shù)項成等差數(shù)列,偶數(shù)項成等比數(shù)列,公差與公比均為2,并且a2+a4=a1+a5,a7+a9=a8
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求使得am•am+1•am+2=am+am+1+am+2成立的所有正整數(shù)m的值.
(Ⅲ)在數(shù)列{an}的奇數(shù)項中任取s項,偶數(shù)項中任取k項(s>1,k>1,s、k∈N*),按照某一順序排列后成等差數(shù)列,當s+k取最大值時,求所有滿足條件的數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.三角形ABC中,AB=2,AC=3,以BC為邊向形外作等邊三角形BCD,問角A為何值時,四邊形ABCD面積最大?并求出最大值.

查看答案和解析>>

同步練習冊答案