9.在△ABC中,∠CAB=∠CBA=30°,AC,BC邊上的高分別為BD,AE,則以A,B為焦點(diǎn),且過D,E兩點(diǎn)的橢圓離心率為(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{3}$-1D.$\sqrt{2}$-1

分析 根據(jù)題意,設(shè)AB=2c,則AE=BD=c,BE=AD=$\sqrt{3}$c,由此能求出以A,B為焦點(diǎn),且過D,E兩點(diǎn)的橢圓離心率.

解答 解:根據(jù)題意,設(shè)AB=2c,
則AE=BD=c,BE=AD=$\sqrt{3}$c,
∴在以A,B為焦點(diǎn),且過D,E的橢圓中,
離心率e=$\frac{2c}{BD+AD}$=$\sqrt{3}-1$.
故選:C.

點(diǎn)評(píng) 本題考查橢圓的離心率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知兩點(diǎn)$A(\sqrt{3},0),C(-\sqrt{3},0)$,若一動(dòng)點(diǎn)Q在運(yùn)動(dòng)過程中總滿足|AQ|+|CQ|=4,O為坐標(biāo)原點(diǎn).
(1)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡E的方程.
(2)設(shè)過點(diǎn)B(0,-2)的直線與E交于M,N兩點(diǎn),當(dāng)△OMN的面積為1時(shí),求此直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知橢圓的方程為$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{16}$=1,則橢圓的長軸長為( 。
A.4B.5C.10D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.執(zhí)行如圖所示的程序框圖,輸出結(jié)果為4,則輸入的實(shí)數(shù)x的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知實(shí)數(shù)x,y滿足$\frac{{x}^{2}}{4}$+y2=1,則x+2y的最大值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知曲線$\frac{{x}^{2}}{3-k}$+$\frac{{y}^{2}}{k+1}$=1(k∈R)表示焦點(diǎn)在y軸上的橢圓,則k的取值范圍是( 。
A.(-∞,1)∪(3,+∞)B.(-∞,3)C.(1,+∞)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0).已知(1,e)和(e,$\frac{\sqrt{3}}{2}$)都在橢圓上,其中e為橢圓的離心率.
(1)求橢圓C的方程;
(2)拋物線y2=2px(p>0)的焦點(diǎn)和橢圓的右焦點(diǎn)重合,過右焦點(diǎn)作斜率為1的直線交橢圓于A,B,交拋物線于C,D,求△OAB和△OCD面積之比(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=(x-a)ex+(a-1)x+a,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)設(shè)g(x)=f′(x),證明:當(dāng)a>2時(shí),函數(shù)g(x)在(0,+∞)上僅有一個(gè)零點(diǎn);
(Ⅲ)若對(duì)任意的x∈[0,2],恒有f(x)≤0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.命題p:?x0>1,lgx0>1,則¬p為( 。
A.?x0>1,lgx0≤1B.?x0>1,lgx0<1C.?x>1,lgx≤1D.?x>1,lgx<1

查看答案和解析>>

同步練習(xí)冊(cè)答案