19.命題p:?x0>1,lgx0>1,則¬p為( 。
A.?x0>1,lgx0≤1B.?x0>1,lgx0<1C.?x>1,lgx≤1D.?x>1,lgx<1

分析 根據(jù)特稱命題的否定是全稱命題進(jìn)行判斷即可.

解答 解:命題是特稱命題,則命題的否定是全稱命題,即?x>1,lgx≤1,
故選:C

點(diǎn)評 本題主要考查含有量詞的命題的否定,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,∠CAB=∠CBA=30°,AC,BC邊上的高分別為BD,AE,則以A,B為焦點(diǎn),且過D,E兩點(diǎn)的橢圓離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{3}$-1D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=$\frac{1}{2}$.過F1的直線交橢圓于A,B兩點(diǎn),且△ABF2的周長為8.
(1)求橢圓E的方程.
(2)在橢圓E上,是否存在點(diǎn)M(m,n)使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)P,Q,且△POQ的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及相對應(yīng)的△POQ的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知Sn=1×2+2×3+3×4+…+n(n+1),計(jì)算S1,S2,S3,并歸納前n項(xiàng)和Sn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0)有相同的焦點(diǎn)(-c,0)和(c,0),若c是a,m的等比中項(xiàng),n2是2m2與c2的等差中項(xiàng),則橢圓的離心率是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)Z滿足Z•(1+i)=2i,則Z是( 。
A.1+iB.1-iC.$\frac{1}{2}+\frac{1}{2}i$D.$\frac{1}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知實(shí)數(shù)m>0,p:x2-4x-12≤0,q:2-m≤x≤2+m.
(Ⅰ)若m=3,判斷p是q的什么條件(請用簡要過程說明“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中的哪一個(gè));
(Ⅱ)若p是q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若對一切正實(shí)數(shù)x,t,不等式$\frac{t}{4}$-cos2x≥asinx-$\frac{9}{t}$都成立,則實(shí)數(shù)a的取值范圍是[-3,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合,M={y|y=cosx,x∈R},$N=\left\{{x∈{Z}\left|{\frac{2-x}{1+x}≥0}\right.}\right\}$,則M∩N為( 。
A.B.{0,1}C.{-1,1}D.(-1,1]

查看答案和解析>>

同步練習(xí)冊答案