14.已知曲線$\frac{{x}^{2}}{3-k}$+$\frac{{y}^{2}}{k+1}$=1(k∈R)表示焦點在y軸上的橢圓,則k的取值范圍是( 。
A.(-∞,1)∪(3,+∞)B.(-∞,3)C.(1,+∞)D.(1,3)

分析 利用橢圓的性質(zhì)求解.

解答 解:∵曲線$\frac{{x}^{2}}{3-k}$+$\frac{{y}^{2}}{k+1}$=1(k∈R)表示焦點在y軸上的橢圓,
∴$\left\{\begin{array}{l}{3-k>0}\\{k+1>0}\\{k+1>3-k}\end{array}\right.$,解得過且過1<k<3.
∴k的取值范圍是(1,3).
故選:D.

點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意橢圓性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其右焦點F(1,0),離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線x-y+m=0與橢圓C交于不同的兩點A,B,且線段AB的中點不在圓x2+y2=$\frac{5}{9}$內(nèi),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知遞增的等差數(shù)列{an}中,a2、a5是方程x2-12x+27=0的兩根,數(shù)列{bn}的前n項和為Sn,且Sn=1-$\frac{1}{2}{b_n}({n∈{N^*}})$.
(1)求數(shù)列{an},{bn}的通項公式;
(2)記cn=an•bn,數(shù)列{cn}的前n項和為Tn.求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1與雙曲線$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{5}$=1有共同的焦點F1,F(xiàn)2,兩曲線的一個交點為P,則$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的值為(  )
A.3B.7C.11D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,∠CAB=∠CBA=30°,AC,BC邊上的高分別為BD,AE,則以A,B為焦點,且過D,E兩點的橢圓離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{3}$-1D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知點M(-$\sqrt{3}$,0),N($\sqrt{3}$,0),若橢圓C:$\frac{{x}^{2}}{a}$+y2=1存在點P使|PM|-|PN|=2$\sqrt{2}$,則a的取值范圍是( 。
A.(0,1)B.(1,+∞)C.[2,+∞)D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=\frac{x^3}{3}-{x^2}-2ax(a∈R)$.
(1)若y=f(x)在(3,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)若$a=-\frac{1}{2}$,設(shè)g(x)=ln(1-x)+f(x),且方程$g(1-x)=\frac{{{{(1-x)}^3}}}{3}+\frac{x}$有實根,求實數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將${({1-\frac{1}{x^2}})^n}(n∈{N_+})$的展開式中x-4的系數(shù)記為an,則$\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2016}}}}$等于( 。
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.2015D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)Z滿足Z•(1+i)=2i,則Z是( 。
A.1+iB.1-iC.$\frac{1}{2}+\frac{1}{2}i$D.$\frac{1}{2}-\frac{1}{2}i$

查看答案和解析>>

同步練習(xí)冊答案