11.F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn),且∠PF1F2=60°,則△PF1F2的面積為$\frac{5\sqrt{3}}{2}$.

分析 由橢圓方程求出a,c的值,借助于橢圓定義及余弦定理求出|PF1|,然后代入三角形面積公式得答案.

解答 解:由題意可得 a=3,b=$\sqrt{5}$,c=2,故|F1F2|=2×2=4,
|PF1|+|PF2|=6,|PF2|=6-|PF1|,
∵$|P{F}_{2}{|}^{2}=|P{F}_{1}{|}^{2}+|{F}_{1}{F}_{2}{|}^{2}$-2|PF1|•|F1F2|cos60°=$|P{F}_{1}{|}^{2}$-4|PF1|+16,
∴(6-|PF1|)2=$|P{F}_{1}{|}^{2}$-4|PF1|+16,
∴|PF1|=$\frac{5}{2}$,
故三角形PF1F2的面積S=$\frac{1}{2}|{F}_{1}{F}_{2}|•|P{F}_{1}|•sin60°$=$\frac{1}{2}×\frac{5}{2}×4×\frac{\sqrt{3}}{2}=\frac{5\sqrt{3}}{2}$.
故答案為:$\frac{5\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),涉及焦點(diǎn)三角形問(wèn)題,常采用橢圓的定義及余弦定理求解,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知曲線C的方程為x2+y2-3x=0($\frac{5}{3}$<x≤3).
(1)曲線C所在圓的圓心坐標(biāo);
(2)是否存在實(shí)數(shù)k,使得直線L:y=k(x-4)與曲線C只有一個(gè)交點(diǎn)?若存在,求出k的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=(m-2)x2+(m-1)x+3是偶函數(shù),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在等差數(shù)列{an}中,$d=-\frac{1}{3},{a_7}=8$,求an和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,在正四棱錐S-ABCD中,E,M,N分別是B,CD,SC的中點(diǎn),P在線段MN上且NP=2PM,下列四個(gè)結(jié)論:
①EP⊥AC;②EP⊥面SAC;③EP∥BD;④EP∥面SBD中成立的為(  )
A.①③B.①②C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若M={y|y=2x-1},P={x|y=$\sqrt{x-1}$},則M∩P=( 。
A.{y|y>1}B.{y|y≥1}C.{y|y>0}D.{y|y≥0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2).
(1)若f(x)能表示成一個(gè)奇函數(shù)g(x)和一個(gè)偶函數(shù)h(x)的和,求g(x)和h(x)的解析式;
(2)已知P={a|函數(shù)f(x)在區(qū)間[(a+1)2,+∞)上是增函數(shù)};Q={a|函數(shù)g(x)是減函數(shù)}.求(P∩CRQ)∪(Q∩CRP);
(3)在(2)的條件下,比較f(2)與3-lg2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.一個(gè)四棱錐的三視圖和直觀圖如圖所示,E為側(cè)棱PD的中點(diǎn).
(1)求證:PB∥平面AEC;
(2)求三棱錐C-PAB的體積.
(3)若F為側(cè)棱PA上一點(diǎn),且$\frac{PF}{FA}$=λ,則λ為何值時(shí),PA⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知雙曲線C1的-個(gè)焦點(diǎn)是F(4,0),一條漸近線方程是$\sqrt{15}$x-y=0,拋物線C2;y2=2px(p>0)的準(zhǔn)線恰好經(jīng)過(guò)雙曲線C1的左頂點(diǎn).
(1)求雙曲線C1和拋物線C2的標(biāo)準(zhǔn)方程;
(2)經(jīng)過(guò)雙曲線C1焦點(diǎn)F的直線1與拋物線C2交于A、B兩點(diǎn),若O是坐標(biāo)原點(diǎn).求證:0A⊥0B.

查看答案和解析>>

同步練習(xí)冊(cè)答案