分析 (1)設(shè)AC、BD的交點(diǎn)為O,連接OE,由三角形的中位線定理可得,OE∥PB,再由線面平行的判定定理,即可得到PB∥平面AEC;
(2)連接OP,則OP⊥平面ABCD,由VC-PAB=VP-ABC,利用等體積法能求出三棱錐C-PAB的體積.
(3)以O(shè)為原點(diǎn),OB為x軸,OC為y軸,OP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出λ=3時(shí),PA⊥平面BDF.
解答 解:(1)由已知中俯視圖可知該幾何體為底面ABCD為菱形,且有一個(gè)角為60°,邊長(zhǎng)為2,
由正視圖和側(cè)視圖可得:幾何體為高度為PO=3的四棱錐,
設(shè)AC、BD的交點(diǎn)為O,連接OE,
∵E為側(cè)棱PD的中點(diǎn),∴OE為△DPB的中位線,∴OE∥PB,
又由OE?平面EAC,PB?平面EAC,
∴PB∥平面AEC.
(2)連接OP,則OP⊥平面ABCD
由OP=3,底面ABCD為菱形,且有一個(gè)角為60°,邊長(zhǎng)為2,
則OD=1,AC=2$\sqrt{3}$,PB=PD=$\sqrt{10}$,PA=PC=2$\sqrt{3}$,
S△ABC=$\frac{1}{2}AC×OB$=$\frac{1}{2}×2\sqrt{3}×1$=$\sqrt{3}$,
∴三棱錐C-PAB的體積:
VC-PAB=VP-ABC=$\frac{1}{3}{S}_{△ABC}×OP$=$\frac{1}{3}×\sqrt{3}×3=\sqrt{3}$.
(3)以O(shè)為原點(diǎn),OB為x軸,OC為y軸,OP為z軸,建立空間直角坐標(biāo)系,
P(0,0,3),A(0,-$\sqrt{3}$,0),B(1,0,0),D(-1,0,0),
設(shè)F(0,b,c),∵$\frac{PF}{FA}$=λ,∴$\overrightarrow{PF}=λ\overrightarrow{FA}$,
∴$(0,b,c-3)=λ(0,-\sqrt{3}-b,-c)$,∴$\left\{\begin{array}{l}{b=-\sqrt{3}λ-bλ}\\{c-3=-cλ}\end{array}\right.$,∴$\left\{\begin{array}{l}{b=-\frac{\sqrt{3}λ}{λ+1}}\\{c=\frac{3}{1+λ}}\end{array}\right.$,
∴$\overrightarrow{BF}$=(-1,-$\frac{\sqrt{3}λ}{λ+1}$,$\frac{3}{1+λ}$),$\overrightarrow{DF}$=(1,-$\frac{\sqrt{3}λ}{λ+1}$,$\frac{3}{1+λ}$),$\overrightarrow{PA}$=(0,-$\sqrt{3}$,-3),
∵PA⊥平面BDF,∴(-$\frac{\sqrt{3}λ}{λ+1}$)(-$\sqrt{3}$)+$\frac{3}{1+λ}×(-3)$=0,
解得λ=3.
∴λ=3時(shí),PA⊥平面BDF.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是直線與平面平行的判定,棱錐體積的求法,直線與平面垂直的判定,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∅ | B. | R | C. | [3,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
父親身高x(cm) | 176 | 173 | 179 |
兒子身高y(cm) | 173 | 179 | 185 |
X | 3 | 0 | 6 |
Y | -6 | 0 | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x-2y+3=0 | B. | x-2y=0 | C. | x-2y-3=0 | D. | 2x-y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com