20.當實數(shù)x,y滿足$\left\{\begin{array}{l}x+2y-4≤0\\ x-y-1≤0\\ x≥1\end{array}\right.$時,1≤ax+y≤4恒成立,則實數(shù)a的取值范圍(  )
A.[1,$\frac{3}{2}$]B.[-1,2]C.[-2,3]D.[1,2]

分析 由約束條件作出可行域,再由1≤ax+y≤4恒成立,結(jié)合可行域內(nèi)特殊點A,B,C的坐標滿足不等式列不等式組,求解不等式組得實數(shù)a的取值范圍.

解答 解:由約束條件作可行域如圖,
聯(lián)立 $\left\{\begin{array}{l}{x=1}\\{x+2y-4=0}\end{array}\right.$,解得C(1,$\frac{3}{2}$ ).
聯(lián)立 $\left\{\begin{array}{l}{x-y-1=0}\\{x+2y-4=0}\end{array}\right.$,解得B(2,1).
在x-y-1=0中取y=0得A(1,0).
要使1≤ax+y≤4恒成立,
則$\left\{\begin{array}{l}{a-1≥0}\\{a+\frac{3}{2}-1≥0}\\{a-4≤0}\\{2a+1-4≤0}\end{array}\right.$,解得:1≤a≤$\frac{3}{2}$.
∴實數(shù)a的取值范圍是[1,$\frac{3}{2}$].
故選:A

點評 本題考查線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了不等式組得解法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其離心率與雙曲線$\frac{x^2}{3}-{y^2}$=1的離心率互為倒數(shù),而直線x+y=$\sqrt{3}$過橢圓C的一個焦點.
(I)求橢圓C的方程;
(Ⅱ)如圖,以橢圓C的左頂點T為圓心作圓T,設(shè)圓T與橢圓C交于兩點M,N,求$\overrightarrow{{T}{M}}•\overrightarrow{{T}{N}}$的最小值,并求出此時圓T的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知sin($\frac{π}{3}$-θ)=$\frac{1}{2}$,則cos($\frac{π}{6}$+θ)=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.執(zhí)行如圖的程序框圖,若輸入的t∈[-3,2],則輸出的S屬于(  )
A.[-3,9)B.[-3,9]C.[3,5]D.(3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)拋物線C:y2=4x的焦點為F,過F的直線l與拋物線交于A,B兩點,M為拋物線C的準線與x軸的交點,若|AB|=8,則tan∠AMB=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={y|y=2x-1},集合B={x|y=$\sqrt{{x^2}-4x+3}}$},全集U=R,則(∁RA)∩B為( 。
A.(-∞,1]∪[3,+∞)B.[1,3]C.(3,+∞)D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知變量x,y滿足$\left\{{\begin{array}{l}{x-y+1≥0}\\{2x-y-2≤0}\\{y+1≥0}\end{array}}\right.$,若目標函數(shù)z=(1+a2)x+y的最大值為10,則實數(shù)a的值為( 。
A.±2B.±1C.±$\sqrt{3}$D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)證明:PA⊥BD;
(Ⅱ)設(shè)PD=AD=1,若M是PB的中點,求棱錐M-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=ln(x+$\sqrt{{x}^{2}+1}$)+3,若f(a)=10,則f(-a)=( 。
A.13B.-7C.7D.-4

查看答案和解析>>

同步練習冊答案