12.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+2sin2x
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值和最小值.

分析 化簡f(x)為正弦型函數(shù),由此求出(1)函數(shù)f(x)的最小正周期T;(2)函數(shù)f(x)的最大值與最小值.

解答 解:函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+2sin2x
=sin2xcos$\frac{π}{6}$+cos2xsin$\frac{π}{6}$+2•$\frac{1-cos2x}{2}$
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x+1
=sin(2x-$\frac{π}{6}$)+1,
(1)函數(shù)f(x)的最小正周期為T=$\frac{2π}{2}$=π;
(2)令2x-$\frac{π}{6}$=$\frac{π}{2}$+2kπ,k∈Z,得x=$\frac{π}{3}$+kπ,k∈Z,
此時sin(2x-$\frac{π}{6}$)取得最大值1,對應函數(shù)f(x)取得最大值為1+1=2;
令2x-$\frac{π}{6}$=-$\frac{π}{2}$+2kπ,k∈Z,得x=-$\frac{π}{6}$+kπ,k∈Z,
此時sin(2x-$\frac{π}{6}$)取得最小值-1,對應函數(shù)f(x)取得最小值為1-1=0.

點評 本題考查了三角函數(shù)的圖象與性質的應用問題,也考查了三角恒等變換的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.如圖所示的四邊形ABCD,已知$\overrightarrow{AB}$=(6,1),$\overrightarrow{BC}$=(x,y),$\overrightarrow{CD}$=(-2,-3)
(1)若$\overrightarrow{BC}∥\overrightarrow{DA}$且-2≤x<1,求函數(shù)y=f(x)的值域;
(2)若$\overrightarrow{BC}∥\overrightarrow{DA}$且$\overrightarrow{AC}⊥\overrightarrow{BD}$,求x,y的值及四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設數(shù)列{an}是等差數(shù)列,且a4=-4,a9=4,Sn是數(shù)列{an}的前n項和,則( 。
A.S5<S6B.S5=S6C.S7=S5D.S7=S6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.把正奇數(shù)數(shù)列{2n-1}中的數(shù)按上小下大、左小右大的原則排成如圖三角形數(shù)表:
設amn(m,n∈N*)是位于這個三角形數(shù)表中從上往下數(shù)第m行、從左往右數(shù)第n個數(shù).
(1)若amn=2017,求m,n的值;
(2)已知函數(shù)f(x)=$\frac{{\root{3}{x}}}{2^n}$(x>0),若記三角形數(shù)表中從上往下數(shù)第n行各數(shù)的和為bn,求數(shù)列{f(bn)}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.(1)關于x的方程x2+2a|x|+4a2-3=0恰有三個不相等的實數(shù)根,求實數(shù)a的值.
(2)關于x的方程x2+2a|x|+4a2-3=0在[-1,1]上恰有兩個不等實數(shù)根,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知下列隨機變量:
①10件產(chǎn)品中有2件次品,從中任選3件,取到次品的件數(shù)X;
②一位射擊手對目標進行射擊,擊中目標得1分,未擊中目標得0分,用X表示該射擊手在一次射擊中的得分;
③劉翔在一次110米跨欄比賽中的成績X;
④在體育彩票的抽獎中,一次搖號產(chǎn)生的號碼數(shù)X.
其中X是離散型隨機變量的是( 。
A.①②③B.②③④C.①②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖是用同樣規(guī)格的黑、白兩色正方形瓷磚鋪設的若干圖案,則按此規(guī)律第n個圖案中需用黑色瓷磚塊數(shù)為( 。
A.4n+2B.4n+4C.4n+6D.4n+8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)y=sinx-$\sqrt{3}$cosx的最大值為2;若其圖象向右平移φ個單位(φ>0)后所得圖象關于y軸對稱,則φ的最小值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設數(shù)列{an}是公差不為零的等差數(shù)列,且a1,a3,a7構成等比數(shù)列,則公比q為( 。
A.$\sqrt{2}$B.4C.2D.$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案