17.已知下列隨機變量:
①10件產品中有2件次品,從中任選3件,取到次品的件數(shù)X;
②一位射擊手對目標進行射擊,擊中目標得1分,未擊中目標得0分,用X表示該射擊手在一次射擊中的得分;
③劉翔在一次110米跨欄比賽中的成績X;
④在體育彩票的抽獎中,一次搖號產生的號碼數(shù)X.
其中X是離散型隨機變量的是( 。
A.①②③B.②③④C.①②④D.③④

分析 利用離散型隨機變量的定義求解.

解答 解:①10件產品中有2件次品,從中任選3件,取到次品的件數(shù)X是一個可變化的整數(shù),故是離散型隨機變量,正確;
②一位射擊手對目標進行射擊,擊中目標得1分,未擊中目標得0分,用X表示該射擊手在一次射擊中的得分,是一個可變化的整數(shù),故是離散型隨機變量,正確;
③劉翔在一次110米跨欄比賽中的成績X,是在范圍內的,因此不是一個離散型的隨機變量,不正確;
④在體育彩票的抽獎中,一次搖號產生的號碼數(shù)X,是一個可變化的整數(shù),故是離散型隨機變量,正確.
故選:C.

點評 本題考查判斷一組變量是否是離散型隨機變量,是一個概念題,解題時注意理解離散型隨機變量的概念,學會判斷.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.sin65°cos20°-cos65°sin20°=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖,三菱錐P-ABC中,PA⊥平面ABC,∠BAC=90°,則二面角B-PA-C的大小等于( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在平面直角坐標系中,已知O為坐標原點,點A的坐標為(a,b),點B的坐標為(cosωx,sinωx),其中ω>0.設f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$.
(1)記函數(shù)y=f(x)的正的零點從小到大構成數(shù)列{an}(n∈N*),當a=$\sqrt{3}$,b=1,ω=2時,求{an}的通項公式與前n項和Sn;
(2)令ω=1,a=t2,b=(1-t)2,若不等式f(θ)-$\sqrt{ab}$>0對任意的t∈[0,1]恒成立,求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+2sin2x
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某藝術學校要排一張有3個舞蹈節(jié)目和4個歌唱節(jié)目的演出節(jié)目單,要求:
(1)任何兩個舞蹈節(jié)目不相鄰的排法有多少種?
(2)歌唱節(jié)目與舞蹈節(jié)目間隔排列的方法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某種產品的廣告費支出x與銷售額y(單位:萬元)之間有如表對應數(shù)據(jù):
x24568
y3040605070
(1)求廣告費支出x與銷售額y回歸直線方程$\hat y$=bx+a(a,b∈R);
已知b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$
(2)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預測值與實際值之差的絕對值不超過5的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.兩平行直線3x-4y-3=0和6x-8y+5=0之間的距離是$\frac{11}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設A、B為兩個獨立事件,若P(A)=0.4,P(A∪B)=0.7.則P(B)=(  )
A.0.6B.0.5C.0.4D.0.3

查看答案和解析>>

同步練習冊答案