18.已知圓柱的底面直徑與高都等于球的直徑,若該球的表面積為48π,則圓柱的側(cè)面積為48π.

分析 根據(jù)球的表面積計(jì)算半徑,得出圓柱的底面半徑個(gè)高,代入側(cè)面積公式計(jì)算.

解答 解:設(shè)球的半徑為r,則4πr2=48π,
∴r=2$\sqrt{3}$,
∴圓柱的底面半徑為2$\sqrt{3}$,高為4$\sqrt{3}$,
∴圓柱的側(cè)面積S=2$π×2\sqrt{3}$×$4\sqrt{3}$=48π.
故答案為:48π.

點(diǎn)評 本題考查了圓柱的側(cè)面積計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知圓錐的母線l=10,母線與軸的夾角α=30°,則圓錐的體積為$\frac{125\sqrt{3}π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為3ρ2cos2θ+4ρ2sin2θ=12.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)已知直線l與曲線C交于A,B兩點(diǎn),試求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)定點(diǎn)A(3,1),B是x軸上的動(dòng)點(diǎn),C是直線y=x上的動(dòng)點(diǎn),則△ABC周長的最小值是( 。
A.$\sqrt{5}$B.2$\sqrt{5}$C.3$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在等差數(shù)列{an}中,a2=4,a4+a7=15. 
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2${\;}^{{a}_{n}-2}$+2n,求b1+b2+b3+…+b9的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x)=$\left\{\begin{array}{l}{alnx+1-a-^{2},x≥1}\\{a{x}^{2}-2x,x>1}\end{array}\right.$對任意實(shí)數(shù)b均恰好有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是[1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=lnx+$\frac{1}{2}$ax2-(a+1)x+1在x=1處取得極小值,則實(shí)數(shù)a的取值范圍是a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,PA⊥平面ABCD,AD∥BC,AD=2BC,AB⊥BC,點(diǎn)E為PD中點(diǎn).
(1)求證:AB⊥PD;
(2)求證:CE∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)(1+x+x2n=a0+a1x+a2x2+…a2nx2n
(1)求a0的值;
(2)求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$的值;
(3)求a1+a3+…+a2n-1的值.

查看答案和解析>>

同步練習(xí)冊答案