12.已知集合A={x|3x-x2>0},B={0,1,2,3},則A∩B等于( 。
A.{0,1}B.{1,2}C.{1,2,3}D.{0,1,2,3}

分析 求出A中不等式的解集確定出A,找出A與B的交集即可.

解答 解:由A中不等式變形得:x(x-3)<0,
解得:0<x<3,即A=(0,3),
∵B={0,1,2,3},
∴A∩B={1,2},
故選:B.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F(-c,0),點(diǎn)D(0,b),直線DF的斜率為$\sqrt{3}$.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)設(shè)過點(diǎn)F的直線交橢圓于A,B兩點(diǎn),過點(diǎn)P(-4c,0)作與直線AB的傾斜角互補(bǔ)的直線l,交橢圓C于M,N兩點(diǎn),問:$\frac{|FA|•|FB|}{|PM|•|PN|}$是否為定值,若是,求出此定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知等軸雙曲線C與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1有相同的焦點(diǎn),則雙曲線C的方程為( 。
A.2x2-2y2=1B.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1C.x2-y2=1D.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓 $\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分割為 F1,F(xiàn)2,左右端點(diǎn)分別為曲 A1,A2,拋物線 y2=4x與橢圓相交于A,B兩點(diǎn)且其焦點(diǎn)與 F2重合,AF2=$\frac{5}{3}$
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn) $(\frac{2}{7},0)$作直線 l與橢圓相交于P,Q兩點(diǎn)(不與 A1,A2重合),求 $\overrightarrow{{A_2}P}$與 $\overrightarrow{{A_2}Q}$夾角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知正數(shù)等比數(shù)列{an},a1=1,a3=2,則a1a2+a3a4+a5a6+…+a2n-1a2n的值為( 。
A.$\sqrt{2}$(2n-1)B.2(2n-1)C.$\frac{\sqrt{2}({4}^{n}-1)}{3}$D.$\frac{2({4}^{n}-1)}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2cos2x+sin2x,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知正四棱錐P-ABCD中,AB=6cm,側(cè)面與底面ABCD所成角的大小為45°
(1)求正四棱錐的體積;
(2)側(cè)棱與底面所成角的大小(精確到1度)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax+xlnx的圖象在點(diǎn)x=e(e為自然對(duì)數(shù)的底數(shù))處的切線斜率為3.
(1)求實(shí)數(shù)a的值;
(2)若存在x0>1,滿足f(x0)-k(x0-1)<0,求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知A={x|x2-3x+2≤0},B={x}x2-(a+1)x+a≤0}.
(1)若A⊆B,求a的取值范圍;
(2)若B⊆A,求a的取值范圍;
(3)若A∩B為僅含有一個(gè)元素的集合,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案