【題目】學(xué)校舉辦的集體活動(dòng)中,設(shè)計(jì)了如下有獎(jiǎng)闖關(guān)游戲:參賽選手按第一關(guān)、第二關(guān)、第三關(guān)的順序依次闖關(guān),若闖關(guān)成功,分別獲得1分、2分、3分的獎(jiǎng)勵(lì),游戲還規(guī)定,當(dāng)選手闖過一關(guān)后,可以選擇得到相應(yīng)的分?jǐn)?shù),結(jié)束游戲;也可以選擇繼續(xù)闖下一關(guān),若有任何一關(guān)沒有闖關(guān)成功,則全部分?jǐn)?shù)都?xì)w零,游戲結(jié)束。設(shè)選手甲第一關(guān)、第二關(guān)、第三關(guān)的概率分別為,,,選手選擇繼續(xù)闖關(guān)的概率均為,且各關(guān)之間闖關(guān)成功互不影響

(I)求選手甲第一關(guān)闖關(guān)成功且所得分?jǐn)?shù)為零的概率

(II)設(shè)該學(xué)生所得總分?jǐn)?shù)為X,X的分布列與數(shù)學(xué)期望

【答案】(Ⅰ);(Ⅱ)見解析.

【解析】分析:(Ⅰ)設(shè)甲“第一關(guān)闖關(guān)成功且所得分?jǐn)?shù)為零”為事件A,“第一關(guān)闖關(guān)成功第二關(guān)闖關(guān)失敗”為事件A1,“前兩關(guān)闖關(guān)成功第三關(guān)闖關(guān)失敗”為事件A2,由A1,A2互斥,能求出選手甲第一關(guān)闖關(guān)成功且所得學(xué)豆為零的概率.

(Ⅱ)X所有可能的取值為0,1,3,6,分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望.

詳解(Ⅰ)設(shè)甲第一關(guān)闖關(guān)成功且所得分?jǐn)?shù)為零為事件第一關(guān)闖關(guān)成功第二關(guān)闖關(guān)失敗為事件,前兩關(guān)闖關(guān)成功第三關(guān)闖關(guān)失敗為事件,則,互斥,

,

(Ⅱ)所有可能的取值為0,1,3,6

,

,

,

所以,的分布列為:

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)當(dāng)時(shí),求的最小值;

(2)若有三個(gè)不同的單調(diào)區(qū)間,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知立方和公式:

求函數(shù)的值域;

求函數(shù),的值域;

若任意實(shí)數(shù)x,不等式恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫局于2004531日發(fā)布了新的車輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗(yàn)國(guó)家標(biāo)準(zhǔn)新標(biāo)準(zhǔn)規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克百毫升,小于80毫克百毫升為飲酒駕車,血液中的酒精含量大于或等于80毫克百毫升為醉酒駕車經(jīng)過反復(fù)試驗(yàn),喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點(diǎn)圖”如圖:

該函數(shù)近似模型如下:,又已知?jiǎng)偤眠^1小時(shí)時(shí)測(cè)得酒精含量值為毫克百毫升根據(jù)上述條件,回答以下問題:

試計(jì)算喝1瓶啤酒多少小時(shí)血液中的酒精含量達(dá)到最大值?最大值是多少?

試計(jì)算喝一瓶啤酒后多少小時(shí)后才可以駕車?時(shí)間以整小時(shí)計(jì)算

參考數(shù)據(jù):,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有一些大小相同的小球,其中號(hào)數(shù)為1的小球1個(gè),號(hào)數(shù)為2的小球2個(gè),號(hào)數(shù)為3的小球3個(gè),,號(hào)數(shù)為n的小球有n個(gè),從袋中取一球,其號(hào)數(shù)記為隨機(jī)變量,則的數(shù)學(xué)期望E=______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,已知,上,且平面.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在棱長(zhǎng)均為2的正四棱錐P﹣ABCD中,點(diǎn)E為PC中點(diǎn),則下列命題正確的是(
A.BE平行面PAD,且直線BE到面PAD距離為
B.BE平行面PAD,且直線BE到面PAD距離為
C.BE不平行面PAD,且BE與平面PAD所成角大于
D.BE不平行面PAD,且BE與面PAD所成角小于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在三棱錐中,底面,,,的中點(diǎn),是線段上的一點(diǎn),且,連接.

(l)求證:平面;

(2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)=ex1﹣ax的圖象與x軸相切. (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>1時(shí),f(x)>m(x﹣1)lnx,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案