【題目】太極圖被稱為“中華第一圖”.從孔廟大成殿梁柱,到樓觀臺(tái)、三茅宮標(biāo)記物;從道袍、卦攤、中醫(yī)、氣功、武術(shù)到韓國(guó)國(guó)旗,太極圖無(wú)不躍居其上.這種廣為人知的太極圖,其形狀如陰陽(yáng)兩魚(yú)互抱在一起,因而被稱為“陰陽(yáng)魚(yú)太極圖”.在如圖所示的陰陽(yáng)魚(yú)圖案中,陰影部分可表示為,設(shè)點(diǎn),則的最大值與最小值之差是( )
A.B.C.D.
【答案】C
【解析】
平移直線,當(dāng)直線與圓切于第三象限的點(diǎn)時(shí),該直線在軸上的截距最小,當(dāng)直線與圓相切于第一象限的點(diǎn)時(shí),該直線在軸上的截距最大,利用圓心到直線的距離等于圓的半徑求出對(duì)應(yīng)的值,即可得出所求結(jié)果.
如下圖所示:
當(dāng)直線與圓切于第三象限的點(diǎn)時(shí),該直線在軸上的截距最小,
此時(shí),由題意得,解得,此時(shí);
當(dāng)直線與圓相切于第一象限的點(diǎn)時(shí),該直線在軸上的截距最大,此時(shí),由題意可得,解得,此時(shí).
因此,的最大值與最小值之差是.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2022年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開(kāi)展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿分為100分)分為6組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)估計(jì)這100名學(xué)生的平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(3)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為“優(yōu)秀”,比賽成績(jī)低于80分為“非優(yōu)秀”.請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | 40 | ||
女生 | 50 | ||
合計(jì) | 100 |
參考公式及數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為等差數(shù)列的公差,數(shù)列的前項(xiàng)和,滿足(),且,若實(shí)數(shù)(,),則稱具有性質(zhì).
(1)請(qǐng)判斷、是否具有性質(zhì),并說(shuō)明理由;
(2)設(shè)為數(shù)列的前項(xiàng)和,若是單調(diào)遞增數(shù)列,求證:對(duì)任意的(,),實(shí)數(shù)都不具有性質(zhì);
(3)設(shè)是數(shù)列的前項(xiàng)和,若對(duì)任意的,都具有性質(zhì),求所有滿足條件的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),證明:在區(qū)間上是增函數(shù);
(2)當(dāng),函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由;
(3)求函數(shù)的對(duì)稱中心,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),有下列五個(gè)命題:
①若存在反函數(shù),且與反函數(shù)圖象有公共點(diǎn),則公共點(diǎn)一定在直線上;
②若在上有定義,則一定是偶函數(shù);
③若是偶函數(shù),且有解,則解的個(gè)數(shù)一定是偶數(shù);
④若是函數(shù)的周期,則,也是函數(shù)的周期;
⑤是函數(shù)為奇函數(shù)的充分不必要條件。
從中任意抽取一個(gè),恰好是真命題的概率為 ( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(為參數(shù)),將曲線上的所有點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來(lái)的后得到曲線;以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線和直線的直角坐標(biāo)方程;
(2)已知,設(shè)直線與曲線交于不同的、兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),實(shí)數(shù)滿足;
(1)當(dāng)函數(shù)的定義域?yàn)?/span>時(shí),求的值域;
(2)求函數(shù)關(guān)系式,并求函數(shù)的定義域;
(3)在(2)的結(jié)論中,對(duì)任意,都存在,使得成立,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點(diǎn),為線段上的動(dòng)點(diǎn).
(1)平面與平面是否互相垂直?如果垂直,請(qǐng)證明;如果不垂直,請(qǐng)說(shuō)明理由.
(2)若,為線段的三等分點(diǎn),求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高學(xué)生的身體素質(zhì),某校高一、高二兩個(gè)年級(jí)共336名學(xué)生同時(shí)參與了“我運(yùn)動(dòng),我健康,我快樂(lè)”的跳繩、踢毽等系列體育健身活動(dòng).為了了解學(xué)生的運(yùn)動(dòng)狀況,采用分層抽樣的方法從高一、高二兩個(gè)年級(jí)的學(xué)生中分別抽取7名和5名學(xué)生進(jìn)行測(cè)試.下表是高二年級(jí)的5名學(xué)生的測(cè)試數(shù)據(jù)(單位:個(gè)/分鐘):
(1)求高一、高二兩個(gè)年級(jí)各有多少人?
(2)設(shè)某學(xué)生跳繩個(gè)/分鐘,踢毽個(gè)/分鐘.當(dāng),且時(shí),稱該學(xué)生為“運(yùn)動(dòng)達(dá)人”.
①?gòu)母叨昙?jí)的學(xué)生中任選一人,試估計(jì)該學(xué)生為“運(yùn)動(dòng)達(dá)人”的概率;
②從高二年級(jí)抽出的上述5名學(xué)生中,隨機(jī)抽取3人,求抽取的3名學(xué)生中為“運(yùn)動(dòng)達(dá)人”的人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com