1.已知函數(shù)f(x)=$\frac{m}{x+1}$+nlnx(m,n為常數(shù))的圖象在x=1處的切線方程為x+y-2=0
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)已知p∈(0,1),且f(p)=2,若對任意x∈(p,1),任意t∈[$\frac{1}{2}$,2],f(x)≥t3-t2-2at+2與f(x)≤t3-t2-2at+2中恰有一個恒成立,求實數(shù)a的取值范圍.

分析 (1)利用導數(shù)的意義求得m,進而求出單調(diào)區(qū)間;
(2)f(x)在[p,1]上的最小值為f(1)=1,最小值f(p)=2,只需2a≥t2-t+$\frac{1}{t}$對t∈[$\frac{1}{2}$,2]恒成立或2a≤t2-t對t∈[$\frac{1}{2}$,2]恒成立,利用導數(shù)求出函數(shù)的單調(diào)性,列出不等式,即可求得結(jié)論;

解答 解:(1)由f(x)=$\frac{m}{x+1}$+nlnx(m,n為常數(shù))的定義域為(0,+∞),
∴f′(x)=-$\frac{m}{{(x+1)}^{2}}$+$\frac{n}{x}$,
∴f′(1)=-$\frac{m}{4}$+n=-1,
把x=1代入x+y-2=0得y=1,∴f(1)=$\frac{m}{2}$=1,
∴m=2,n=-$\frac{1}{2}$,
∴f(x)=$\frac{2}{x+2}$-$\frac{1}{2}$lnx,f′(x)=-$\frac{2}{{(x+1)}^{2}}$-$\frac{1}{2x}$,
∵x>0,∴f′(x)<0,
∴f(x)的單調(diào)遞減區(qū)間為(0,+∞),沒有遞增區(qū)間.
(2)由(1)可得,f(x)在[p,1]上單調(diào)遞減,
∴f(x)在[p,1]上的最小值是f(1)=1,最大值是f(p)=2,
∴只需t3-t2-2at+2≤1或≥2,
即2a≥t2-t+$\frac{1}{t}$對t∈[$\frac{1}{2}$,2]恒成立或2a≤t2-t對t∈[$\frac{1}{2}$,2]恒成立,
令g(t)=t2-t+$\frac{1}{t}$,則g′(t)=$\frac{(t-1)({2t}^{2}+t+1)}{{t}^{2}}$,
令g′(t)=0,解得:t=1,而2t2+t+1>0恒成立,
∴$\frac{1}{2}$≤t<1時,g′(t)<0,g(t)遞減,1<t≤2時,g′(t)>0,g(t)遞增,
∴g(t)的最大值是max{g($\frac{1}{2}$),g(2)},
而g($\frac{1}{2}$)=$\frac{7}{4}$<g(2)=$\frac{5}{2}$,
∴g(t)在[$\frac{1}{2}$,2]的最大值是g(2)=$\frac{5}{2}$,
又t2-t∈[-$\frac{1}{4}$,2],
∴2a≥$\frac{5}{2}$或2a≤-$\frac{1}{4}$,解得:a≥$\frac{5}{4}$或a≤-$\frac{1}{8}$,
故a的范圍是(-∞,-$\frac{1}{8}$]∪[$\frac{5}{4}$,+∞).

點評 本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性、最值等知識,考查學生對恒成立問題的等價轉(zhuǎn)化思想,考查學生的運算求解能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.用反證法證明命題“設a,b,c∈N*,若ab能被c整除,且c為質(zhì)數(shù),則a與b至少有一個能被c整除”時,反設正確的是( 。
A.a,b中至多有一個能被c整除B.a,b中至多有一個不能被c整除
C.a,b中至少有一個不能被c整除D.a,b都不能被c整除

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖所示,該幾何體是由一個直三棱柱ADE-BCF和一個正四棱錐P-ABCD組合而成,AD⊥AF,AE=AD=2.
(1)證明:平面PAD⊥平面ABFE;
(2)求正四棱錐P-ABCD的高h,使得二面角C-AF-P的余弦值是$\frac{{2\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如圖是一個空間幾何體的三視圖,則該幾何體為六棱臺.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.一個幾何體的正視圖和俯視圖都是邊長為6cm的正方形,側(cè)視圖是等腰直角三角形(如圖所示),這個幾何體的體積是( 。
A.216cm3B.54cm3C.36cm3D.108cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知方程$\widehat{y}$=0.85x-82.71是根據(jù)女大學生的身高預報她的體重的回歸方程,其中x的單位是cm,$\widehat{y}$的單位是kg,那么針對某個體(160,53)的殘差是-0.29.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(虛)線畫出的是某多面體的三視圖,則該多面體的體積為( 。
A.64B.$\frac{64}{3}$C.16D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.電影《功夫熊貓3》預計在2016年1月29日上映,某地電影院為了了解當?shù)赜懊詫ζ眱r的看法,進行了一次調(diào)研,得到了票價x(單位:元)與渴望觀影人數(shù)y(單位:萬人)的結(jié)果如表:
 x(單位:元) 30 40 50 60
 y(單位:萬人) 4.5 4 3 2.5
(1)若y與x具有較強的相關關系,試分析y與x之間是正相關還是負相關;
(2)請根據(jù)如表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
(3)根據(jù)(2)中求出的線性回歸方程,預測票價定為多少元時,能獲得最大票房收入.
參考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overrightarrow{x}\overrightarrow{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{x}^{-2}}$,$\overrightarrow{a}$=$\overrightarrow{y}$-$\widehat$$\overrightarrow{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.點P是曲線ρ=2(0≤θ≤π)上的動點,A(2,0),AP的中點為Q.
(1)求點Q的軌跡C的直角坐標方程;
(2)若C上點 M處的切線斜率的取值范圍是[-$\sqrt{3}$,-$\frac{{\sqrt{3}}}{3}}$],求點 M橫坐標的取值范圍.

查看答案和解析>>

同步練習冊答案