【題目】設函數.
(1)求函數的單調區(qū)間;
(2)若函數有兩個零點,求滿足條件的最小正整數的值;
(3)若方程,有兩個不相等的實數根,比較與0的大。
【答案】(1) 單調增區(qū)間為,單調減區(qū)間為. (2) ,(3)詳見解析
【解析】試題分析: (1)先求函數導數,再求導函數零點 ,根據定義域舍去,對進行討論, 時,,單調增區(qū)間為.時,有增有減;(2) 函數有兩個零點,所以函數必不單調,且最小值小于零 ,轉化研究最小值為負的條件:,由于此函數單調遞增,所以只需利用零點存在定理探求即可,即取兩個相鄰整數點代入研究即可得的取值范圍,進而確定整數值,(3)根據,所以只需判定大小,由可解得,代入分析只需比較大小, 設,構造函數,利用導數可得最值,即可判定大小.
試題解析:(1)解: .
當時,,函數在上單調遞增,函數的單調增區(qū)間為.
當時,由,得;由,得.
所以函數的單調增區(qū)間為,單調減區(qū)間為.
(2)解:由(1)得,若函數有兩個零點
則,且的最小值,即.
因為,所以.令,顯然在上為增函數,
且,,所以存在,.
當時,;當時,.所以滿足條件的最小正整數
(3)證明:因為是方程的兩個不等實根,由(1)知.
不妨設,則,.
兩式相減得,
即.
所以.因為,
當時,, 當x∈時,,
故只要證即可,即證明,
即證明,
即證明.設.
令,則.
因為,所以,當且僅當t=1時,,所以在上是增函數.
又,所以當時,總成立.所以原題得證
科目:高中數學 來源: 題型:
【題目】(本小題12分)根據國家環(huán)保部新修訂的《環(huán)境空氣質量標準》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.某城市環(huán)保部門隨機抽取了一居民區(qū)去年20天PM2.5的24小時平均濃度的監(jiān)測數據,數據統(tǒng)計如下:
]
組別 | PM2.5濃度(微克/立方米) | 頻數(天) | 頻率 |
第一組 | 3 | 0.15 | |
第二組 | 12 | 0.6 | |
第三組 | 3 | 0.15 | |
第四組 | 2 | 0.1 |
(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;
(Ⅱ)求樣本平均數,并根據樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】口袋中裝有2個白球和n(n≥2,nN*)個紅球.每次從袋中摸出2個球(每次摸球后把這2個球放回口袋中),若摸出的2個球顏色相同則為中獎,否則為不中獎.
(I)用含n的代數式表示1次摸球中獎的概率;
(Ⅱ)若n=3,求3次摸球中恰有1次中獎的概率;
(III)記3次摸球中恰有1次中獎的概率為f(p),當f(p)取得最大值時,求n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量,為坐標原點,動點滿足:.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)已知直線都過點,且,與軌跡分別交于點,試探究是否存在這樣的直線?使得是等腰直角三角形.若存在,指出這樣的直線共有幾組(無需求出直線的方程);若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家用電器公司生產一新款熱水器,首先每年需要固定投入 200萬元,其次每生產1百臺,需再投入0.9萬元.假設該公司生產的該款熱水器當年能全部售出,但每銷售1百臺需另付運輸費0.1萬元.根據以往的經驗,年銷售總額(萬元)關于年產量(百臺)的函數為.
(1)將年利潤表示為年產量的函數;
(2)求該公司生產的該款熱水器的最大年利潤及相應的年產量.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著移動互聯(lián)網時代的到來,手機的使用非常普遍,“低頭族”隨處可見。某校為了解家長和教師對學生帶手機進校園的態(tài)度,隨機調查了100位家長和教師,得到情況如下表:
教師 | 家長 | |
反對 | 40 | 20 |
支持 | 20 | 20 |
(1)是否有95%以上的把握認為“帶手機進校園與身份有關”,并說明理由;
(2)把以上頻率當概率,隨機抽取3位教師,記其中反對學生帶手機進校園的人數為X,求隨機變量X的分布列和數學期望.
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方形ABCD-A1B1C1D1中,E,F,M分別是棱B1C1,BB1,C1D1的中點,是否存在過點E,M且與平面A1FC平行的平面?若存在,請作出并證明;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com